

ACID SULFATE SOILS INVESTIGATION REPORT 251 ADELAIDE STREET, RAYMOND TERRACE, NEW SOUTH WALES PREPARED FOR RAYMOND TERRACE PARKLANDS CES DOCUMENT REFERENCE: CES200502-PHB-AG

Written by: A. Carras

Reviewed by: M. Challoner

(CEnvP:SCS)

Authorised

E lave by:

D. Lowe

Client: Raymond Terrace Parklands PO BOX 342

Earlwood, NSW, 2206

Date: 21 January 2021

Telephone: 02 8569 2200 • **Fax**: 02 9983 0582

Suite 7, 5 Brunker Road, Broadmeadow • NSW 2292 • Australia • www.consultingearth.com.au

© Consulting Earth Scientists Pty Ltd ALL RIGHTS RESERVED

UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

ACID SULFATE SOILS INVESTIGATION REPORT 251 ADELAIDE STREET, RAYMOND TERRACE, NEW SOUTH WALES PREPARED FOR RAYMOND TERRACE PARKLANDS

CES DOCUMENT REFERENCE: CES200502-PHB-AG

Document Control

Hard Copy	Digital copy	Recipient	Location					
	1	Chris Xistouris	Raymond Terrace Parklands					
	1 CES Library		CES Pty Ltd					

Distribution Register

The Distribution Register identifies the recipients of issued copies of this report.

Revision Register

Revision Number	Revision Date	Description
0.0	26/11/20	Acid Sulfate Soils Investigation Report
1.0	18/12/20	Acid Sulfate Soils Investigation Report
2.0	21/01/21	Acid Sulfate Soils Investigation Report

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES Pty Ltd. CES Pty Ltd does not accept any liability for actions taken based upon incomplete copies of this document.

ACID SULFATE SOILS INVESTIGATION REPORT

251 ADELAIDE STREET, RAYMOND TERRACE, NEW SOUTH WALES

PREPARED FOR RAYMNOND TERRACE PARKLANDS

CES DOCUMENT REFERENCE: CES200502-PHB-AG

TABLE OF CONTENTS

T	ABLE	OF CONTENTS	3
1		INTRODUCTION AND OBJECTIVES	7
	1.1	INTRODUCTION	7
	1.2	ACID SULFATE SOILS	8
2		SCOPE OF WORK	9
3		SITE IDENTIFICATION AND ENVIRONMENTAL SETTING	11
	3.1	SITE IDENTIFICATION	11
	3.2	SITE DESCRIPTION	11
	3.3	SITE ZONING	11
	3.4	SITE ENVIRONMENTAL SETTING	11
	3.5	ACID SULFATE SOILS RISK MAP	12
	3.6	PORT STEPHENS LOCAL ENVIRONMENT PLAN	13
	3.7	Hydrogeology	13
	3.8	AERIAL PHOTOGRAPH SUMMARY FOR INVESTIGATION AREA	13
	3.9	SURROUNDING LAND USE	14
	3.10	GEOLOGY	14
	3.11	PREVIOUS ACID SULFATE REPORTS - PRELIMINARY GEOTECHNICAL INVESTIGATION (AARGUS 2020)	15
4		FIELDWORK	16
	4.1	SOIL SCREENING AND SAMPLING	16
	4.2	GROUNDWATER AND SURFACE WATER SAMPLING AND ASSESSMENT	17
5		ASSESSMENT CRITERIA	18
	5.1	ACID SULFATE SOILS	18
	5.2	WATER INVESTIGATION CRITERIA	18

6	DISCUSSION AND RECOMMENDATIONS	19
6.1	Soils	19
6.2	WATER	20
6.3	POTENTIAL IMPACTS	20
6.4	RECOMMENDATIONS	21
7	LIMITATIONS OF THIS REPORT	22
8	REFERENCES	23

LIST OF FIGURES

Figure 1: Site Locality Map

Figure 2: Site Layout Plan

Figure 3: Soil Bore Location Plan

LIST OF TABLES

- Table T1: Acid Sulfate Soils Field Screening
- Table T2: Laboratory SPOCAS Results Summary
- Table T3: Surface Water and Groundwater Screening Results
- Table T4: Groundwater Monitoring Well Water Levels (29 October 2020)
- Table T5: Laboratory Water quality Analysis Results

LIST OF APPENDICES

- Appendix A: Borehole Logs
- Appendix B: Field Data Sheets and Calibration Certificates
- Appendix C: Lotsearch Historical Photographs
- Appendix D: Beresfield Acid Sulfate Soil Map
- Appendix E: Laboratory Certificates

SAMPLING AND ANALYSIS QUALITY PLAN 251 ADELAIDE STREET, RAYMOND TERRACE, NEW SOUTH WALES

PREPARED FOR RAYMOND TERRACE PARKLANDS

CES DOCUMENT REFERENCE: CES200502-PHB-AG

LIST OF ABBREVIATIONS

ACM	Asbestos containing material
BTEX	Benzene, toluene, ethylbenzene, xylenes
COC	Chain of Custody
CES	Consulting Earth Scientists Pty Ltd
CSM	Conceptual Site Model
DO	Dissolved oxygen
DP	Deposited Plan
DQI	Data Quality Indicators
DoH	Department of Health
DQO	Data Quality Objectives
EC	Electrical conductivity
Eh	Redox potential
EPA	Environment Protection Authority
На	Hectares
LCS	Laboratory Control Sample
LEP	Local Environmental Plan
LGA	Local government area
m	Metre
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine pesticides
OPP	Organophosphorus Pesticides

PAH	Polycyclic aromatic hydrocarbons
PCB	Poly-chlorinated biphenyls
PFAS	Per- and polyfluoroalkyl substances
PQL	Practical Quantitation Limit
PSP	Project Safety Plan
RPD	Relative percentage difference
SAQP	Sampling and Analysis Quality Plan
TRH	Total Recoverable Hydrocarbons
QA/QC	Quality Assurance and Quality Control

SAMPLING AND ANALYSIS QUALITY PLAN 251 ADELAIDE STREET, RAYMOND TERRACE, NEW SOUTH WALES

PREPARED FOR RAYMOND TERRACE PARKLANDS

CES DOCUMENT REFERENCE: CES200502-PHB-AG

1 INTRODUCTION AND OBJECTIVES

1.1 INTRODUCTION

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Raymond Terrace Parklands (the Client) to undertake an Acid Sulfate Soil Investigation for the former quarry and associated land at 251 Adelaide Street, Raymond Terrace¹.

The site is formally defined as Lot 232 in Deposited Plan (DP) 593512 (the Site) and covers an area of 443,600m² (44.36Ha) of which approximately 207,100m² (20.71Ha) is covered by a flooded former quarry void. The area of the site that is considered to be impacted directly by former quarrying activities is 700m² (0.7Ha). Refer to **Figure 1**, **Figure 2**, and **Figure 3** for a Site Locality Map, Site Layout Plan, and Soil Bore Location Plan, respectively.

The acid sulfate soils investigation was a requirement of the Planning Secretary's Environmental Assessment Requirements (SEARs) 1409:

• An assessment in accordance with ASSMAC Guidelines for the presence and extent of acid sulfate soils (ASS) and potential acid sulfate soils (PASS) on the site and, where relevant, appropriate mitigation measures.

CES notes that no development plans indicative of soil disturbance was provided by the Client. CES further notes that the NSW ASSMAC (1998) *Acid Sulfate Soils Assessment Guidelines* are only applicable when soil is to be disturbed. There are also no plans to reduce the groundwater level since the proposed development comprises backfilling of a former quarry void. Therefore, it is anticipated that the groundwater level will remain the same during construction and operation activities.

¹ This report does not include any work required for the development application for the proposed residential area, which is located to the north and west of the former quarry area and is understood to be part of a separate package of work.

It is also noted that the vast majority of the site is currently inundated and large portions of the site are not accessible. As a result, there are unknown Acid sulfate soils conditions across the site – however, given the proposed development, these areas of unknown status are not considered to represent a risk to the backfilling of the former quarry void. In the event that excavation works or dewatering works are proposed, then a more comprehensive acid sulfate soils assessment is recommended.

1.2 ACID SULFATE SOILS

Acid Sulfate Soils are the common name given to naturally occurring sediments and soils containing iron sulfides (principally iron sulfide or iron disulfide or their precursors). The exposure of the sulfide in these soils to oxygen by drainage of excavation may lead to the generation of sulfuric acid.

Acid Sulfate Soils (ASS) include Actual Acid Sulfate Soils (AASS) and Potential Acid Sulfate Soils (PASS). AASS and PASS are often found in the same soil profile, with AASS generally overlying PASS horizons.

AASS are soils containing highly acidic soil horizons or layers resulting from the aeration of soil materials that are rich in sulfide, primarily iron sulfides. This oxidation produces hydrogen ions in excess of the capacity of the soil to neutralise the acidity resulting in soils of pH of 4 or less. These soils can usually be identified by the presence of pale-yellow mottles and coatings of jarosite.

PASS are soils which contain iron sulfides or sulfidic material which have not been exposed to air and oxidised. The field pH of these soils in their undisturbed state is 4 or more and may be neutral or slightly alkaline. However they pose a considerable environmental risk when disturbed, as they will become severely acid when exposed to air.

Characteristics of ASS typically include:

- Sediments of recent geological age (Holocene) up to 10,000 years old.
- Formation in soil horizons at an elevation of less than 5m AHD.
- Formation in marine or estuarine sediments and tidal lakes.
- Formation in coastal wetlands or back swamp areas; waterlogged or scalded areas interdune swales or coastal sand dunes.
- Formation where the dominant vegetation is mangroves, reeds, rushes and other swamp tolerant and marine vegetation.
- They may be present in areas identified in geological descriptions or in maps bearing sulfide minerals, coal deposits or former marine shales/sediments.
- They may be present in deeper older estuarine sediments greater than 10m below the ground surface of Holocene or Pleistocene age.

- They possess visual and olfactory indicators such as sulfidic odours, bright yellow, yellow or straw-coloured mottling and pore space and fissure infill and coatings that could indicate the presence of jarosite, goethite or other similar acid producing sulfate minerals.
- They may be indicated by the presence of shells, organic matter and dark reddish streaks that would indicate the presence of iron oxides.
- They may be indicated by the presence of dark grey or black monosulfidic sediments or material showing the characteristics of fluvial bottom sediments or sediments deposited in a lacustrine environment.

2 SCOPE OF WORK

The following scope of work was adopted to assess for the presence or absence of acid sulfate soils:

- Prepare a Project Safety Plan (PSP);
- Carried out a site walkover assessment;
- Drilled 17 boreholes for a visual and olfactory screening using pushtube methods;
- Drilled five soil bores to be converted into groundwater monitoring wells using casing advancer or hollow auger methods;
- Logged and sampled the strata encountered during drilling works, including any observations of water inflows and encountered groundwater;
- Carried out approximately 10 field peroxide acid sulfate soils screening tests for the full depth of each borehole²;
- Selected two soil samples which were submitted to a NATA accredited laboratory for Suspension Peroxide Oxidation Combined Acidity and Sulfate (SPOCAS) analysis;
- Collect and submit five groundwater samples to a NATA accredited laboratory for Soluble Chloride and Soluble Sulfate analysis;
- Record groundwater parameters such as pH and electrical conductivity readings during groundwater sampling; and

² Noting field peroxide tests could were not carried out on soil bore MW1 which utilised casing advancer methods due to the basic nature of the bentonite drilling fluid which would cause erroneous results.

• Carried out a site walkover to record pH and electrical conductivity readings in all encountered surface water across the flooded former quarry void, Grahamstown Drain, and Windeyers Creek³.

 $^{^3}$ CES notes no other ponded surface water was encountered on Site.

3 SITE IDENTIFICATION AND ENVIRONMENTAL SETTING

3.1 SITE IDENTIFICATION

The site, as it is referred to in this ESA, consists of 251 Adelaide Street, Raymond Terrace, legally described as Lot 232 of DP 593512. A site location plan is attached as **Figure 1**.

The area of the site is approximately 443,600m².

The site located within the local government area (LGA) of Port Stephens.

The approximate coordinates of the centre of the site are 382310.47 East 6372882.941 North (MGA 1994 Zone 56).

3.2 SITE DESCRIPTION

The Site is relatively flat rising slightly in the north-west corner. To access the Site, access is gained across a bridge that crosses the Grahamstown Drain from Adelaide Street. A flooded former quarry void is situated in the centre of the Site. Grahamstown Drain runs from the north of the site to the southwest where it joins Windeyers Creek that runs from east to west in the southern portion of the Site.

3.3 SITE ZONING

The Port Stephens Local Environmental Plan (LEP) 2013 indicates that the site is currently zoned "RU2 – Rural Landscape".

3.4 SITE ENVIRONMENTAL SETTING

Detailed information on the environmental setting of the site is presented in the previous environmental reports listed in Section 1 and should be referred to. A summary of the site setting is presented below.

A review of the Newcastle 1:100,000 Geological Series Sheet 9232 (edition 1) 1995, indicated that the site is likely to be underlain by unconsolidated quaternary alluvium (Qa).

A review of the Newcastle 1:100.000 Soil Landscapes of the Newcastle 1995, indicated that the site is likely to ne underlain by the following two units:

- Disturbed Terrain is related to land that has been extensively modified by anthropogenic activities and soils can be widely varied; and
- Bobs Farm Variant A is characterised by "deep (100 <150 cm), moderately well-drained Lutic Rudosols (Siliceous Sands). where thin sand veneers overlie estuarine sediments, deep (100 <150 cm), poorly drained Sulphidic Redoxic Hydrosols (affinity Humic Gley Soils) occur." In addition, "Acid Sulfate Soils are likely to be present at depth below the

beach ridges and also at shallower depths where thin veneers of sand overlie estuarine deposits."

If present, acid sulfate soils are likely to be present in the Bobs Farm Variant A Group.

A subsurface profile of the Site is presented below in table 1.

Geotechnical Unit	Denth to Ton 1 Thickness		Typical Description
Unit 1 – Fill	0.0	~0.0 - 3.7	Silty, clayey, SAND: fine to medium grained, medium plasticity, with gravels, organic material, some aggregate, no odours or staining, brown/grey Sandy CLAY: low plasticity, brown SAND: fine grained, beige
Unit 2 – Natural	0.0 - 3.7	Unknown	Silty, clayey, SAND: fine to medium grained, with organic material, some siltstone gravels, white/light brown/grey Silty, sandy CLAY: high plasticity, with organic material, dark grey CLAY: moderate plasticity, dark grey CLAY: medium plasticity, shale fragments and ironstone gravels, no odours or staining, grey/red/yellow/orange, dry

 Table 1 - Inferred Subsurface Model

The Site is generally flat with no discernible slope. The site was a former quarry.

3.5 ACID SULFATE SOILS RISK MAP

The Beresfield 1:25,000 *Acid Sulfate Soils Risk Map* (Department of Land and Conservation, 1997) indicates that the majority portion of the Site is classified as High *Probability of occurrence of Acid Sulfate Soil in the soil profile, Ap1 (Alluvial, Plain, elevation between 1-2m). The environment of deposition has been suitable for the formation of acid sulfate soil materials. Acid sulfate soil materials are widespread or sporadic and may be buried by alluvium or windblown sediments.*

A copy of the Beresfield 1:25,000 Acid Sulfate Soils Risk Map is provided in Appendix D.

3.6 PORT STEPHENS LOCAL ENVIRONMENT PLAN

The Port Stephens *Acid Sulfate Soils Map ASS_002* (Port Stephens Local Environmental Plan 2013 [Amendment No 22]) denotes the Site is classified as Class 2 Land indicating "A person must not, without development consent, carry out works below more than 1 metres below the natural ground surface and/or works likely to lower the water table."

3.7 HYDROGEOLOGY

The relevant hydrogeology of the site consists of a shallow unconfined aquifer, which is likely to have a relatively high permeability due to the formation consisting of sands, silts, and clays. Previous investigations carried out by CES at the Site indicated that groundwater is likely to be approximately at surface (for the inundated quarry to 1.86m below ground level (across the remaining portion of the site, dependent on the topographical elevation) in the study area.

The shallow aquifer underlying the study area is expected to discharge to Grahamstown Drain and Windeyer's Creek which meet on the south-western portion of the site. Windeyer's Creek is a tributary of the Hunter River. Based on the previous investigation data, the shallow aquifer is flows from east to west.

3.8 AERIAL PHOTOGRAPH SUMMARY FOR INVESTIGATION AREA

In order to understand the likelihood and spatial extent of the potential and actual acid sulfate soils it is necessary to understand the topographical, hydrogeological and land use changes that may have occurred to the Investigation Area. As such the following historical aerials indicate changes in topography, hydrogeology, and land use due to development. Historical aerials are provided in **Appendix C**.

The Investigation Area, based on a review of historical aerial photography is described below:

- 1954 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): The Site consists of undeveloped land. Grahamstown Drain runs east to west across the northern and western portion of the Site. A swamp adjacent to Windeyer's Creek is located in the southern portion of the Site.
- 1966 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have begun in the central portion of the site and a small water body is observed on the western portion of the quarried area.
- 1976 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have extended towards the east of the Site. Haul roads have been developed across the Site and a processing area is located in northern central portion of the Site. Quarrying activity has begun in the north-western portion of the Site (not inclusive of

this investigation). The water body in the centre of the Site is now approximately a quarter of the size of the present day flooded former quarry void.

- 1984 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have continued and the flooded quarry void is now approximately half the size of the present day flooded former quarry void.
- 1993 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have extended further to the north-eastern and western portion of the Site. The water body in the centre of the Site is now approximately 65% of the present day flooded former quarry void.
- 2001 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have extended to the south-west portion of the site. The central water body is now approximately 75% of the present day flooded former quarry void.
- 2010 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): Quarrying activities have further extended to the north-east portion of the site. The processing area located on the centre of the Site has been subsequently quarried and is now located on the western portion of the Site. The central water body now occupies most of the site is approximately the same as present day.
- 2020 (Source: Lotsearch Historical Aerials, NSW Department of Customer Service): The processing area located on the western portion of the Site has been disbanded. The flooded former quarry void occupies most of the Site.

3.9 SURROUNDING LAND USE

Based on current information, the surrounding land use comprised the following:

- North Residential properties;
- **East** Bushland and Raymond Terrace Wastewater Treatment Works with the Pacific Highway beyond;
- **South** Bushland and Windeyers Creek with the Pacific Highway and commercial industrial properties beyond; and
- West Adelaide street with farmland beyond.

3.10 GEOLOGY

With reference to the Gosford – Lake Macquarie 1:100, 000 Geological Series Map (9131, 9231) the lithology underlying the Investigation Area is divided into two units:

• Qa, Quaternary sediments, undifferentiated alluvial deposits; sand, silt, clay and gravel; some residual and colluvial deposits. Includes some channel, levee, lacustrine, floodplain and swamp deposits of the Cainozoic age.

• "Rn" Sandstone, interbedded sandstone and siltstone, claystone. conglomerate and sandstone (Widden Brook conglomerate) of the Narrabeen Group (Clifton Subgroup) of the Mesozoic age.

If present acid, sulfate soils are likely to be present in the Quaternary sediments.

3.11 PREVIOUS ACID SULFATE REPORTS - PRELIMINARY GEOTECHNICAL INVESTIGATION (AARGUS 2020)

The Aargus (2020) preliminary geotechnical, although investigating an area directly north of the site, stated the following:

- Subsurface materials consisted of disturbed or reworked sandy soils, residual clay (at location BH4), and sandstone;
- There exists a pre-existing groundwater well in the south-west of the site;
- Five groundwater wells (GW1 to GW5) were installed to up to approximately 2.8m in depth on the site (to the north);
- Groundwater was encountered at depths between 1.6 and 1.92m during drilling works;
- Stabilised groundwater levels were measured at depths between 1.46 and 1.74m; and
- Analytical results reported there are no potential acid sulfate soils or acid sulfate soils on the site.

4 FIELDWORK

Drilling fieldwork was undertaken during August, September, and October 2020.

The surface water assessment was undertaken on 25 August 2020.

Groundwater sampling was undertaken on 29 October 2020.

A copy of Field Data Sheets and Calibration Certificates are provided in Appendix B.

4.1 SOIL SCREENING AND SAMPLING

17 boreholes were completed as part of the investigation works. Boreholes were advanced using hand auger and/or pushtube techniques to natural materials or refusal. 5 additional boreholes were advanced using casing advancer or hollow stem augers and converted into groundwater monitoring wells. Borehole logs are presented as **Appendix A**.

The log recorded the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, and moisture content;
- Depth of excavation;
- Drill rig refusal;
- Method of drilling; and
- The depth of first encountered free water.

Locations of boreholes are presented on Figure 2.

Representative soil samples were collected across the 5 soil bores to be converted into groundwater monitoring wells. A subsample of each sample collected was screened for acid sulfate soils in accordance with the *Acid Sulfate Soils Assessment Guidelines* (ASSMAC 1998) *Appendix 1 field peroxide test procedure*. Field data sheets for the field screening are presented as **Appendix B**. A calibrated pH meter was used for the field screening. The field screening data is also summarised in Table T1. Based on the field screening results, two samples (MW2/1.0 andMW3/3.0) were selected for SPOCAS analysis, based on the samples exhibiting strong indicators of acid sulfate soils.

Care was taken when collecting samples to ensure the most representative sample of the targeted material was sampled. The soil was then transferred to the sample bag using new nitrile gloves and efforts were made to minimise the air in the bag with the soil sample. Samples were double bagged and immediately placed in an ice cooled cool box for transport to the laboratory. At the end of each day the samples in the cool box were transported to the laboratory (within one day).

Samples were collected directly from the hand auger. All samples were collected with new disposable nitrile gloves.

While on site, the supervising engineer/scientist filled out a copy of CES "sample register", which documents:

- Time of sample collection;
- Weather; and
- Sample location and depth.

All samples were classified in the field based on soil/fill characteristics and obvious signs of ASS such as sulfidic odour or other olfactory evidence of ASS noted on a log. All samples were transported to the laboratory under Chain-of Custody procedures and maintained in an ice-filled cooler. The COC forms detail the following information:

- Site identification;
- The sampler's name;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s).

4.2 GROUNDWATER AND SURFACE WATER SAMPLING AND ASSESSMENT

Surface water pH and electrical conductivity assessment was undertaken on 25 August 2020. The assessment consisted of the assessment of the pH and electrical conductivity of all water bodies encountered in the Investigation Area. Recordings were made using a calibrated water quality meter. Field data sheets for the recordings and the water quality meter are presented in **Appendix B**. Surface Water and Groundwater screening results are provided in Table T3. In addition, Groundwater Monitoring Levels are provided in Table T4.

Five groundwater samples were collected from the groundwater monitoring wells circling the flooded former quarry void. The collected water samples were submitted for TRH, PAH, dissolved heavy metals, pH, total organic carbon, soluble chloride, and soluble sulfate4. Sample handling was undertaken similarly to soil samples (as detailed above) with samples collected in appropriately preserved laboratory prepared sample containers suitable for the targeted analytes.

⁴ Noting that only soluble chloride, soluble sulfate, and pH have been included in Table T5.

5 ASSESSMENT CRITERIA

The following assessment criteria were selected for comparison with the laboratory analytical results as a screening assessment.

5.1 ACID SULFATE SOILS

For the assessment of field screening for acid sulfate soils, the following criteria are considered to be indicators of acid sulfate soils:

- Initial pH of less than 4;
- Final pH of less than 3 following addition of hydrogen peroxide;
- Vigorous or volcanic reaction following addition of hydrogen peroxide; and
- A drop in pH from the initial pH following addition of hydrogen peroxide.

For assessment of the acid sulfate soils SPOCAS analysis the action criteria published in the NSW ASSMAC (1998) *Acid Sulfate Soils Assessment Guidelines* is dependent on the amount of tonnes disturbed. Although there are no current plans for the disturbance of any soils for the proposed industrial/commercial development, it is prudent to compare the SPOCAS results to the disturbance of 1-1,000 tonnes of soil.

Therefore, for assessment of the acid sulfate soils SPOCAS analysis the action criteria published in the NSW ASSMAC (1998) *Acid Sulfate Soils Assessment Guidelines* for disturbance of 1-1,000 tonnes of soil was selected. Relevant action criteria are presented with the laboratory results in Table T2.

5.2 WATER INVESTIGATION CRITERIA

For assessment of quality a combination of the ANZECC (2000) *Australia and New Zealand Guidelines for Fresh and Marine Water Quality* trigger values for 95% protection of marine ecosystems and default trigger values for physical and chemical stressors for south-eastern Australia, slightly disturbed ecosystems (estuaries). Screening criteria are presented in Table T5.

6 DISCUSSION AND RECOMMENDATIONS

Laboratory Certificates are provided in Appendix E.

6.1 SOILS

The soil bore logs did not indicate any odours or colours (bright yellow to yellow streaks) or physical evidence (such as shells, organic matter or dark grey or black monosulfidic sediments) that are commonly associated with acid sulfate soils.

Soil pH readings indicated that soil across the Investigation Area were acidic to basic with pH (1: 5 deionised water) readings as low as 4.50 and as high as 8.34 detected. Following the addition of hydrogen peroxide, pH readings as low as 3.60 were detected and a maximum post hydrogen peroxide pH of 7.41 was detected. The maximum pH change following the addition of hydrogen peroxide of 2.43 was detected.

Low reactions with no visible effervescence to slight to moderate effervescence were recorded as having occurred following the addition of hydrogen peroxide to a number of soils.

Acidic soils with pH of less than 4 with vigorous and exothermic reactions following addition of the hydrogen peroxide and a pH change of greater that 1 pH unit between the initial pH and the pH following the addition of hydrogen peroxide are indicators of the presence of acid sulfate soils. Acidic soils with pH of less than 3 following addition of hydrogen peroxide and a pH change of greater than 1 are indicators of potential acid sulfate soils.

No field pH readings were reported with a pH less than 4 and no pH readings following addition of hydrogen peroxide with a pH less than 3 were reported. Therefore, no actual acid sulfate soils and no potential acid sulfate soils were detected in the field screening.

SPOCAS laboratory analysis detected TAA and TPA in excess of the action criteria in sample MW3/3.0. The detection of S_{POS} (0.03% w/w) was equal to the action criteria in sample MW3/3.0. This indicates low level of potential sulfur within sample MW3/3.0. The sample which detected exceedances of the TAA and TPA action criteria were detected in the shallow soils located below the standing water level.

The results of field observations, field screening and pH analysis indicate no acid sulfate or acidic soils on Site. The laboratory analysis indicates that the site does contain acidic soils. However, S_{POS} results equal to the action criteria indicate the source of the acidity is likely not from sulfidic ores and/or materials and is more likely from organics and/or other minerals.

As noted in the Introduction, acid sulfate soils are an issue when the soil is disturbed (i.e. excavated allowing oxidation of the sulphidic minerals within the soil, or the groundwater level is reduced. Given that the proposed development comprises the backfilling of a former quarry void, the

groundwater level should not be altered. In addition, as noted above there is no physical or chemical evidence for the presence of acid sulfate soils.

6.2 WATER

The current groundwater levels in the Investigation Area present conditions which are unlikely to be suitable for the oxidation of potential acid sulfate soils (PASS) to form actual acid sulfate soils (AASS), as the soils are saturated, therefore if potential acid sulfate soils remain onsite, it is unlikely that further oxidation to form acid will occur.

pH and EC readings from surface water and groundwater monitoring wells at the site indicated that no acid formed in the soils has been mobilised and is causing significant acidification (pH<5.0) with the potential exception of MW5 (pH = 3.65). However, MW5 is located on the hydraulically up-gradient eastern boundary of the site with no down-gradient surface water readings registering pH levels below 5.0. The pH reading taken in down gradient surface water of Windeyer's Creek (sample SW13) was 6.81, indicating that any acid generated is not causing significant impact to the receiving water body. This indicates that it is unlikely that any acid formed in the soils is having a detrimental effect on water quality in the down-gradient receptor. Therefore any acid generated is unlikely to present an unacceptable risk to offsite receptors.

6.3 POTENTIAL IMPACTS

It is understood by CES that there are no plans for the disturbance of any soils during the proposed backfilling of the former quarry void, therefore there is no risk of disturbance of acid sulfate soils.

As discussed in Section 6.1, based on the results of the fieldwork, although there are acidic soils (NB. The acidic soils were only identified through laboratory analysis, but there was no physical evidence or field screening evidence) on site, it is unlikely that the acidic soils present on the site are acid sulfate soils.

With respect to groundwater and surface water investigated, the following should be noted:

• Acidified groundwater (pH<6.5) was identified during the investigation in the groundwater monitoring wells. pH was observed to return to neutral conditions in all the surface water locations (down-gradient location SW13). Therefore, the acidic conditions are being naturally ameliorated and there is no risk to down-gradient receptors.

Based on the above the acidified groundwater and surface water are considered to present a low risk to the environment through migration or discharge.

Based on the investigation, it is unlikely that conditions with respect to acid generation will deteriorate in the Site.

6.4 **RECOMMENDATIONS**

Recommendations for further work are:

- If any future development requires the disturbance of natural soils, further acid sulfate sampling compliant to the sampling density set out in NSW ASSMAC (1998) should be undertaken;
- If any future development proposals require a lowering of the groundwater level, further acid sulfate soil assessment and groundwater/surface water monitoring should be undertaken to ensure the water quality parameters are compliant with NSW ASSMAC (1998).

7 LIMITATIONS OF THIS REPORT

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in geotechnical and environmental investigations before being used for any other purpose. CES accepts no liability for use or interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and CES.

This report does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. It is noted that areas of the site could not be investigated due to the presence of structures including the residential property and presence of ponds. Should information become available regarding conditions at the site including previously unknown sources of contamination, CES reserves the right to review the report in the context of the additional information.

8 REFERENCES

Aargus (2020), Preliminary Geotechnical Investigation Report, 251 Adelaide Street, Raymond Terrace, NSW 2324, 24 January 2020.

ANZG (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines

Environmental Resources Management (ERM) (2011), Environmental Due Diligence Report, Phase 1 Acid Sulfate Soils Investigation, 251 Adelaide Street, Raymond Terrace, NSW 2324, Australia, 4 July 2011.

National Environmental Protection Council, (NEPC) (2013). *National Environment Protection Measure (Assessment of Site Contamination) Measure 1999* (as amended 2013).

NSW ASSMAC (1998) Acid Sulfate Soils Assessment Guidelines.

NSW EPA (2020). Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.

Western Australia, Department of Health (2009). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia* (GARMACS).

Figures

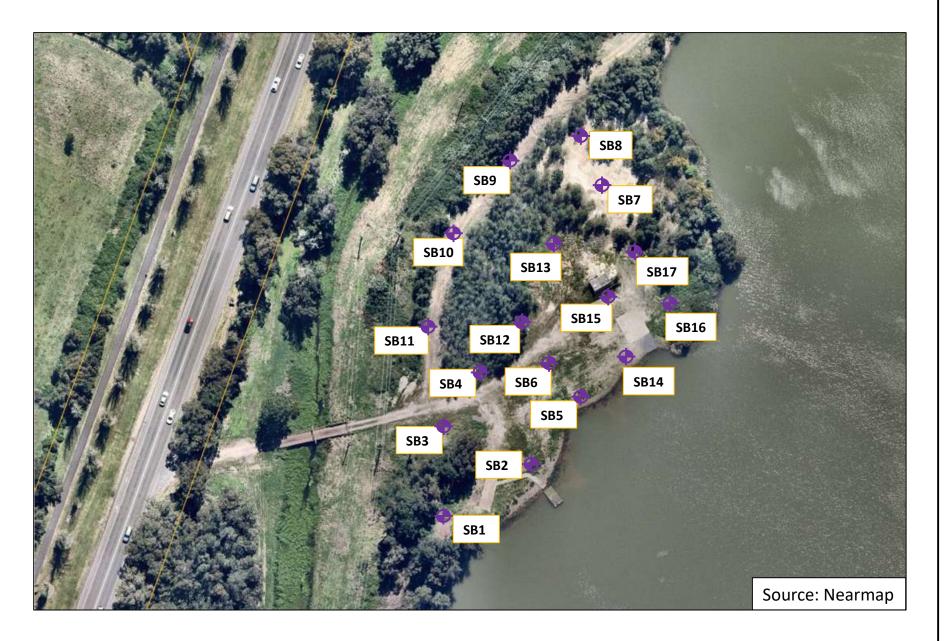
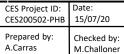



Figure 3: Soil Bore Location Plan

Tables

lient: Pheonix B rincipal: M. Challo roject: CES20050 pocation: 251 Adela	ner 92-PHB	ymond Terrace N	'SW				Date: Test Tested By: Checked By	/:	27/03/2018 to 0- pH _f and pH _{fox} AC MC	4/04/2018	
							PH _{FOX}	•	• `		
			$_{\rm P}H_{\rm F}$				(oxidation in 30% hyd	rogen peroxic	le)		
Sample Location	Depth (m)	Soil Description	pH in 1:5 distilled water	time (Mins)	рН _{FOX}	Effervescence (see note below)	Odour	Colour change during reaction	_P H Change (ie _P H _F - _P H _{FOX})	Additional comments	Submitted to Laboratory fo SPOCAS
MW1	0.10	See Borelog	5.62	10.00	5.31	a(L)	None	No	0.31	-	
MW1	1.00	See Borelog	5.62	10.00	5.29	a(L)	None	No	0.33	-	_
MW2	0.10	See Borelog	6.03	10.00	4.40	b(L)	None	No	1.63	-	
MW2	0.10	See Borelog	6.11	10.00	4.31	a(L)	None	No	1.80		Yes
MW2	1.00	See Borelog	5.13	10.00	3.60	a(L)	None	No	1.53	-	-
MW2	3.00	See Borelog	4.50	10.00	4.10	a(L)	None	No	0.40	-	
MW2 MW2	5.00	See Borelog	4.30 5.73	10.00	5.01	a(L)	None	No	0.40	-	-
MW2 MW2	7.00	See Borelog	6.07	10.00	4.11	a(L) a(L)	None	No	1.96	-	
MW2 MW2	9.00	ě				a(L)	None	No		-	-
MW2 MW2		See Borelog	6.67 7.30	10.00	6.11 5.91	a(L)	None	No	0.56	-	
MW2 MW2	11.00	See Borelog		10.00						-	-
	13.00	See Borelog	7.45	10.00	6.35	a(L)	None	No	1.10	-	-
MW2	15.00	See Borelog	7.92	10.00	6.50	a(L)	None	No	1.42	-	
MW2	17.00	See Borelog	7.43	10.00	7.41	a(L)	None	No	0.02	-	
MW3	0.10	See Borelog	8.24	10.00	6.69	a(L)	None	No	1.55	-	-
MW3	1.00	See Borelog	8.33	10.00	6.32	a(L)	None	No	2.01	-	
MW3	3.00	See Borelog	8.34	10.00	5.91	b(L)	None	No	2.43	-	Yes
MW3	5.00	See Borelog	5.89	10.00	4.93	a(L)	None	No	0.96	-	-
MW3	7.00	See Borelog	5.86	10.00	4.61	a(L)	None	No	1.25	-	-
MW3	9.00	See Borelog	6.10	10.00	5.51	a(L)	None	No	0.59	-	-
MW3	11.00	See Borelog	6.35	10.00	6.11	a(L)	None	No	0.24	-	-
MW3	13.00	See Borelog	6.36	10.00	6.02	a(L)	None	No	0.34	-	-
MW4	0.10	See Borelog	6.30	10.00	5.90	a(L)	None	No	0.40	-	-
MW4	1.00	See Borelog	5.8	10.00	5.2	a(L)	None	No	0.60	-	-
MW4	3.00	See Borelog	6.2	10.00	5.9	a(L)	None	No	0.30	-	-
MW4	6.00	See Borelog	6.4	10.00	5.8	a(L)	None	No	0.60	-	-
MW4	9.00	See Borelog	6.1	10.00	4.9	a(L)	None	No	1.20	-	-
MW4	12.00	See Borelog	6	10.00	5.00	a(L)	None	No	1.00	-	-
MW4	13.50	See Borelog	6.10	10.00	5.90	a(L)	None	No	0.20	-	-
MW5	0.10	See Borelog	6.90	10.00	5.90	a(L)	None	No	1.00	-	-
MW5	1.00	See Borelog	7.10	10.00	6.40	a(L)	None	No	0.70	-	-
MW5	3.00	See Borelog	6.30	10.00	5.10	a(L)	None	No	1.20	-	-
MW5	6.00	See Borelog	5.90	10.00	4.90	a(L)	None	No	1.00	-	-
MW5	9.00	See Borelog	6.40	10.00	5.90	a(L)	None	No	0.50	-	-
MW5	12.00	See Borelog	6.20	10.00	4.90	a(L)	None	No	1.30	-	
MW5	15.00	See Borelog	6.40	10.00	5.20	a(L)	None	No	1.30	-	
MW5	18.00	See Borelog	6.30	10.00	5.90	a(L)	None	No	0.40	-	-
MW5	20.00	See Borelog	6.5	10.00	5.90	a(L)	None	No	0.40	-	
DTES: <u>1. Observed</u>		a. No visible effe					Vigorous effervescent re		0.00	-	<u> </u>

Table T2: L	able T2: Laboratory SPOCAS Results Summary																			
						TAA pH	s-TAA pH		TPA pH	s-TPA pH	TSA pH	s-TSA pH								
Reference	Sample	Depth	Date Sampled	Texture	pH kcl	6.5	6.5	pH Ox	6.5	6.5	6.5	6.5	ANCE	a-ANCE	s-ANCE	SKCl	SP	SPOS	a-SPOS	CaKCl
Units					pH units	moles H+/t	%w/w S	pH units	moles H+/t	%w/w S	moles H+/t	%w/w S	% CaCO3	moles H+/t	%w/w S	‰w/w S	%w/w	%w/w	moles H+/t	%w/w
PQL						5	0.01		5	0.01	5	0.01	0.05	5	0.05	0.005	0.005	0.005	5	0.005
250828	MW2/1.0	1.0	07/08/2020	Medium	4.1	22	0.03	4.2	31	0.05	9	0.02	NA	NA	NA	0.009	0.02	0.009	5	0.005
250828	MW3/3.0	3.0	08/09/2020	Coarse	4.3	30	0.05	3.7	100	0.16	70	0.11	NA	NA	NA	0.02	0.04	0.03	17	0.1
Action Crit	Action Criteria (Coarse Texture/Meidum Texture) 18/36 18/36 18/36 0.0.03/0.06																			
BOLD	BOLD Exceedance of Action Criteria																			
Note: Action	n criteria ba	ased on 1-1	000 tonnes distu	Irbed material																

Table T2: I	aboratory	SPOCAS R	esults Summary																	
																		s-Net	a-Net	Liming
																		Acidity	Acidity	rate
														Fineness	a-Net		Liming	without -	without	without
Reference	Sample	Depth	Date Sampled	Texture	CaP	CaA	MgKCl	MgP	MgA	SHCl	SNAS	a-SNAS	s-SNAS	Factor	Acidity	s-Net Acidity	rate	ANCE	ANCE	ANCE
Units					%w/w	%w/w	%w/w	%w/w	%w/w	%w/w S	%w/w S	moles H+/t	%w/w S	-	moles H+/t	%w/w S	kg CaCO3/t	%w∕w S	moles H+/t	kg CaCO3/t
PQL					0.005	0.005	0.005	0.005	0.005	0.005	0.005	5	0.01	1.5	5	0.01	0.75	0.01	5	0.75
250828	MW2/1.0	1.0	07/08/2020	Medium	0.007	< 0.005	< 0.005	0.011	0.01	0.019	0.01	<5	< 0.01	1.5	32	0.05	2.4	0.051	32	2.4
250828	MW3/3.0	3.0	08/09/2020	Coarse	0.11	0.01	0.04	0.049	0.009	0.023	0.006	<5	< 0.01	1.5	50	0.08	3.8	0.081	50	3.8
Action Crit	Action Criteria (Coarse Texture/Meidum Texture) 18/36 0.03/0.06																			
BOLD	BOLD Exceedance of Action Criteria																			
Note: Actio	n criteria ba	ased on 1-1	1000 tonnes distu	urbed material																

Table T3: Surface Water and Groundwater Screening Results							
Location	EC mS/cr	m pH	Notes				
SW1	368.1	7.79	Cross-gradient				
SW2	366.3	7.75	Cross-gradient				
SW3	363.8	7.66	Cross-gradient				
SW4	363	7.63	Cross-gradient				
SW5	362.9	7.62	Cross-gradient				
SW6	363.2	7.69	Cross-gradient				
SW7	363.4	7.6	Cross-gradient				
SW8	363.2	7.64	Cross-gradient				
SW9	363.1	7.63	Cross-gradient				
SW10	365.8	7.54	Cross-gradient				
SW11	488	7	Up-gradient				
SW12	485.1	6.77	Down-gradient				
SW13	509	6.81	Down-gradient				
MW1	2169	6.38	Down-gradient				
MW2	1739	6.05	Down-gradient				
MW3	607	5.46	Cross-gradient				
MW4	980	5.52	Up-gradient				
MW5	5401	3.65	Up-gradient				

Location	SWL (m BTOC)	Stickup (m agl)	SWL (m bgl)
MW1	2.46	0.6	1.86
MW2	0.21	0.96	-0.75
MW3	2.3	0.85	1.45
MW4	0.35	0.63	-0.28
MW5	1.15	0.63	0.52

 Table T4: Groundwater Monitoring Well Water Levels (29 October 2020)

	Laborator	y Report ID	254589-A	254589-A	254589-A	254589-A	254589-A	
	Sam	Sample ID		MW2	MW3	MW4	MW5	
	Sama	Sample Location		Down	Cross	Un Cradient	Up Gradient	Adopted
	Sam			Gradient	Gradient	Up Gradient		Screening
	D	ate Sampled	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	Criteria*
Analyte	Units	PQL						
Chloride, Cl	mg/L	1	270	320	86	220	740	_
Sulfate, SO4	mg/L	0.1	290	<1	65	67	2700	-
Cl:SO4	-	-	0.9	640	1.3	3.3	0.3	-
Bold	Exceedance	e of Adopted	Screening Cri	teria		_		

* Adopted Screening Criteria based on the lower of marine GILs ASC NEPM (NEPC, 2013) or the default trigger values for physical and chemical stressors for south-eastern Australia, slightly disturbed ecosystems (estuaries) ANZECC (2000).

Appendix A – Borehole Logs

GROUNDWATER WELL MW1

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 07/09/20 DRILLIN COMPANY NUMAC DRILLER Lewis DRILLING METHOD Casing Advancer TOTAL DEPTH 19 COORDINATES -32.776776, 151.740395 COORD SYS Latitude/Longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

	I					1	1		
Depth (m)	Samples	Water	Graphic Log	Moisture	Material Description	На	pH Fox	Well Diagram (0.60m Stickup)	Additional Observations
_			/	D	FILL: Sandy CLAY: fine grained, brown	\5.62 /	\5.31 /	Grout	
- 1 -	/MW2/1.0	-		М	Clayey SAND: fine to medium grained, with organic material, light brown/grey	5.65	5.29	Bentonite	
- 2									
		⊻		W	Sandy CLAY: high plasticity, dark grey with white fine grained sand				
4 					Clayey SAND: fine to medium grained, white with grey clays				
- 7									
9									
- 10								Filter Pack	
11 11									
12 									
- 13									
- 14 - - - 15									
- 15 - - - 16									
- 17									
 18									
- - - - - - 19-					Termination Depth at: 19m			Borehole Collapse	
-									

Disclaimer This bore log is intended for environmental not geotechnical purposes. produced by ESlog.ESdat.net on 17 Nov 2020

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 07/09/20 DRILLIN COMPANY NUMAC DRILLER Lewis DRILLING METHOD Hollow Flight Augers TOTAL DEPTH 19 COORDINATES -32.778581, 151.739263 COORD SYS Latitude/Longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

Depth (m)	Samples	Water	Graphic Log	Moisture	Material Description	Hđ	pH FOX	Well Diagram (0.96m Stickup) S	Additional Observations
1	/MW1/1.0\			D	FILL: Sandy CLAY: moderate plasticity, with silt, foregin materials include aggregate and ceramic tiles, dark brown/grey	6.03 / 6.11 / 5.13	\4.40 \4.31 \3.60	Grout	
2				H M	Clayey SAND: fine to medium grained,	4.50	<u>/4.10</u>	Bentonite	
4		⊻		W	white/grey				
5 6						<u>√5.73</u>	5.01		
7						6.07	√4.11 \		
8 9						6.67	<u>/6.11</u>		
10									
11 12						7.30	5.91	Filter Pack	
13						<u>√7.45</u> ∖	6.35		
14 15						<u>√7.92</u> ∖	6.50		
16					Clayey SAND: fine to medium grained, brown	/7.43			
17 18						<i>- 1.</i> 43 (<u>v</u>		

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLIN COMPANY NUMAC DRILLER Lewis DRILLING METHOD Hollow Flight Auger TOTAL DEPTH 19 COORDINATES -32.774930, 151.741825 COORD SYS Latitude/Longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

Depth (m)	Samples	Water	Graphic Log	Moisture	Material Description	Hd	pH FOX	Well Diagram (0.85m Stickup) ∝ ≚	Additional Observations
- - - - - 1				D	FILL: Silty Sandy CLAY: moderate plasticity, with some gravels, organic material, dark brown	\ <u>8.24</u> / <u>8.33</u>	\ <u>6.69</u> /	-Grout -Bentonite	
2	/MW3/3.0\	₽		H M W		<u>√8.34</u> ∖	√5.91 ∖		
4 4 5					Clayey SAND: fine to medium grained, white sand with dark grey clay	<u></u>	4.93		
6						<u>√5.86</u> \	4.61		
- 8						<u>√6.10</u> ∖	√5.51 \	-Filter Pack	
- - - - - - - - - - - - - - - - - - -					increasing clay content	6.35	6.11		
- 12						<u>√6.36</u> \	6.02		
- 14 								Borehole collapse	
- 16					Termination Depth at: 15m Refusal on inferred bedrock				
- 17 - 17 - 18									
19 									

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 23/10/20 DRILLIN COMPANY STRATACORE DRILLER Mike DRILLING METHOD Hollow Flight Auger TOTAL DEPTH 13.5 COORDINATES -32.772527, 151.748027 COORD SYS Latitude/Longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

Depth (m)	Samples	Water	Graphic Log	Moisture	Material Description	Ha	рН FOX	Well Diagram (0.63m Stickup)	Additional Observations
		⊻		H	FILL: Silty SAND: fine grained, with organic	6.3	5.9_/	Bentonite	
1	/MW4/1.0	-		W	Silty Sandy CLAY: high plasticity, white sand with dark grey clays and silts	/5.8	5.2		
2									
3						6.2	√ <u>5.9</u> ∖		
4									
5									
6						6.4	5.8	Filter Pack	
7									
7									
8									
						/6.1	4.9		
9						0.1	1.0		
10									
11									
12						6.0	5.0		
								Borehole collapse	
13						/6.4	<u>√5.9</u>		
14		·			Termination Depth at: 13.5m Refusal on inferred bedrock				

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 22/10/20 DRILLIN COMPANY STRATACORE DRILLER Mike DRILLING METHOD Hollow Flight Auger TOTAL DEPTH 20 COORDINATES -32.776781, 151.747116 COORD SYS Latitude/Longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

	Samples	Water	Graphic Log	Moisture	Material Description	Hđ	pH FOX	Well Diagram (0.63m Stickup) ອັ	Additional Observations
	/MW5/0.5	⊻		D H M W	Sandy CLAY: high plasticity, with organic detritus, grey/brown Clayey Sandy: fine to medium grained, with silt and minor quartz gravels, white sand with grey clay	6.9 /7.1 /6.3	5.9 /6.4 /5.1	-Bentonite	
					Light grey with lower clay content	<u></u>	4.9	Filter Pack	
) 10 11					Brown	6.4	4.9		
12 13 14						<u>/6.3</u>	√ <u>5.2</u> ∖		
6 7 8 9						<u> </u>	<u>√5.9</u> √5.9	Borehole collapse	

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 4.8 COORDINATES -32.776784, 151.740492 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.0			FILL: Silty SAND: fine to medium grained, with clay, foreign materials include aggregate, tiles, and ceramic pieces, brown	М	No staining or odours
- 0.5 	0.1					
- - - 1 -	0.1					
- 1.5 	0.1			FILL: Silty SAND: fine to medium grained, with clay, foreign materials	М	
- - 2	0.5	SB1/2.0		include ceramic pieces, brown		
_						
- 2.5 - -	0.2			Clayey SAND: fine to medium grained, with silt, grey	W	No staining or odours
- 3 -	0.7					
- - - 3.5 -						
- 4 						
- 4.5 - -						
_				Termination Depth at:3.2 m		

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 3.6 COORDINATES -32.776660, 151.740597 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

COMN	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.7			FILL: Silty SAND: fine to medium grained, with clay, foreign materials include aggregate, brown/grey	D	No staining or odours
 0.5 	0.4	SB2/0.5			М	
- - 1 -	0.7			Increasing sand content		
- - - 1.5 -	0.6					
- - 2 -	0.5					
- - 2.5 - -	1.3			Silty SAND: medium to coarse grained, with siltstone gravels, brown	W	No staining or odours
- - 3 -	1.2					No staining, slight organic odour
- - 3.5						
_				Termination Depth at:3.6 m		
- 4 -						
- 4.5 -						
-						

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 3.6 COORDINATES -32.776529, 151.740316 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
- - - - - 0.5	0.1	SB3/0.5		FILL: Silty SAND: fine to medium grained, with clay, foreign materials include aggregate, brown/grey	D	No staining or odours
- - - 1 -	0.4			CLAY: moderate plasticity, grey Clayey SAND: medium to coarse grained, white/grey	M	No staining, slight organic odour No staining or odours
- 1.5 - -	0.6					
- - 2 - -	0.9			Grey		
2.5 - - -	0.7			Increasing clay content		
3 - - - - 3.5						
-				Termination Depth at:3.6 m		
- 4.5 - - -						

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 3.6 COORDINATES -32.776383, 151.740509 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

сомм	IENTS					
Depth (m)	DID	Samples	Graphic Log	Material Description	Moisture	Additional Observations
- - - - 0.5	0.6			FILL: Silty SAND: fine to medium grained, with clay and cobbles, foreign materials include aggregate, brown/grey	D	No staining or odours
- - - - 1 -	0.7	SB4/1.0		CLAY: moderate plasticity, grey	М	No staining or odours
- - 1.5 -	0.2			Clayey SAND: fine to medium grained, grey	W	No staining or odours
- - 2 -	0.9					
- - 2.5 - -	0.7					
- 3 -						
3.5 -				Termination Depth at:3.6 m		
- 4 - 4 						
- 4.5 - -						
				onmental not geotechnical purposes		Page 1 of 1

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 3.6 COORDINATES -32.776411, 151.740816 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	COMMENTS										
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations					
- - - - - - - -	0.5	SB5/0.5		FILL: Silty SAND: fine to medium grained, with clay, foreign materials include aggregate, brown/grey	D	No staining or odours					
- - 1 - -	0.9			CLAY: moderate plasticity, grey	М	No staining or odours					
- 1.5 - -	3.1			Clayey SAND: medium to coarse grained, grey	W	No staining or odours					
- - 2 - -	0.7										
- 2.5 - -	0.6										
- 3 - -											
- 3.5											
-				Termination Depth at:3.6 m							
4 											
- - 4.5 - - -											

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 01/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 3.6 COORDINATES -32.776317, 151.740721 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.5	SB6/0.1		FILL: Silty SAND: fine to medium grained, with clay, foreign materials include aggregate, light brown	D	No staining or odours
- - - 0.5 -	0.9					
- 1 -	0.3				М	No staining or odours
- 1.5 -	1.0			Clayey SAND: medium to coarse grained, grey	W	No staining or odours
- - 2 -	0.7					
- - 2.5 - -	0.8					
- 3 - -						
_ _ 3.5						
_				Termination Depth at:3.6 m		
4 						
- 4.5 - -						

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW

DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.8 COORDINATES -32.775851, 151.740965 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

COMN	COMMENTS										
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations					
- 0.5	0.6	SB7/0.1	Later and the second	Clayey SAND: fine to medium grained, with siltstone gravels, brown	D Mois	No staining or odours No staining or odours					
-											

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW

DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.8 COORDINATES -32.775824, 151.740829 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

COMN	COMMENTS									
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations				
- 0.5	0.3	SB8/0.1		Clayey SAND: fine to medium grained, brown		No staining or odours				

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.6 COORDINATES -32.775728, 151.740605 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
	0.2	SB9/0.1		FILL: Silty Gravelly SAND: fine to medium grained, brown/red	D	No staining or odours
-	0.6			Clayey SAND: fine to medium grained, beige/grey	D	No staining or odours
- 0.5	0.0					
_				Termination Depth at: 0.6 m		
-				anmental not geotechnical purposes		Page 1 of 1

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.2 COORDINATES -32.775828, 151.740504 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

COMN	COMMENTS									
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations				
_	0.1				D	No staining or odours				
-				Termination Depth at: 0.2 m Refusal on concrete aggregate						
- 0.5										
_										
_										

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.2 COORDINATES -32.776076, 151.740318 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

соми	COMMENTS									
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations				
_	0.1				D	No staining or odours				
_				Termination Depth at: 0.2 m Refusal on concrete aggregate						
- 0.5										
-										
-										

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 2.7 COORDINATES -32.776093, 151.740626 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.5			FILL: Silty Gravelly SAND: fine to medium grained, brown/grey/red	D	No staining or odours
- - - 0.5 -	1.8					
- 1 - -	0.3			Sandy CLAY: moderate plasticity, dark grey mottled brown	М	No staining or odours
- 1.5	0.4	SB12/1.5		Clayey SAND: medium grained, beige	w	No staining or odours
_						
- 2	0.5					
_						
- 2.5 -						
_			<u> </u>	Termination Depth at:2.7 m		
- 3.5						
- 4						
-						
-						
- 4.5 -						
		I				

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 2.7 COORDINATES -32.776003, 151.740754 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	ENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.7			FILL: Silty Gravelly SAND: fine to medium grained, brown/grey/red	D	No staining or odours
- 0.5 - -	0.6			FILL: Gravelly SAND: fine to medium grained, brown/red/grey	D	No staining or odours
- 1 - -	0.2	SB13/1.0				
- - 1.5 - -	0.4			FILL: Sandy CLAY: moderate plasticity, red/grey	Н	No staining or odours
- - - - -	0.9			Sandy CLAY: moderate to high plasticity, with organic material, dark grey	М	No staining or odours
- 2.5 -	0.8					
				Termination Depth at:2.7 m		
- 3 - -						
- - 3.5 - -						
- 4 - -						
- 4.5 - - -						

Disclaimer This log is intended for environmental not geotechnical purposes.

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 1.5 COORDINATES -32.776317, 151.740929 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

сомм	ENTS					
Depth (m)	PID	Samples	Graphic Log	Material Description	Moisture	Additional Observations
_	0.2			FILL: Silty SAND: fine to medium grained, with minor clay, grey/brown	D	No staining or odours
- 0.5	0.3			CLAY: moderate plasticity, grey mottled brown	Н	No staining or odours
- 1	0.7	SB14/1.0		Clayey SAND: medium to coarse grained, light/dark grey	M W	No staining or odours
- 1.5 -	0.8			Termination Depth at: 1.5 m		

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 2.7 COORDINATES -32.776164, 151.740890 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

сомм	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
	0.3			FILL: SAND: fine grained, beige	D	No staining or odours
- 0.5 	0.6	SB15/0.5		FILL: Silty Gravelly SAND: fine to medium grained, brown/red/grey	D	No staining or odours
- 1 -	0.2				Η	
- 1.5 	0.4			Sandy CLAY: moderate plasticity, grey	M	No staining or odours
- - 2 - -	0.7				W	
- 2.5 -						
_			<i>,</i> /	Termination Depth at: 2.7 m		
3 -						
- 3.5 - -						
- 4 -						
- 4.5 						

Disclaimer This log is intended for environmental not geotechnical purposes.

PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 2.7 COORDINATES -32.776184, 151.741073 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

СОММ	IENTS					
Depth (m)	DIA	Samples	Graphic Log	Material Description	Moisture	Additional Observations
-	0.4			FILL: Silty SAND: fine to medium grained, grey/brown	D	No staining or odours
- 0.5 - -	1.1			FILL: Sandy GRAVEL: fine to medium grained, grey/brown	D	No staining or odours
- 1 - -	2.2	SB17/1.0				
- 1.5 - -	2.6			CLAY: moderate plasticity, dark grey	М	No staining or odours
- - 2 - -	1.7			Clayey SAND: medium to coarse grained, beige	W	No staining or odours
- 2.5 -						
_				Termination Depth at: 2.7 m		
3 						
3.5 - - -						
- 4 - -						
- - 4.5 - - -						

Disclaimer This log is intended for environmental not geotechnical purposes.

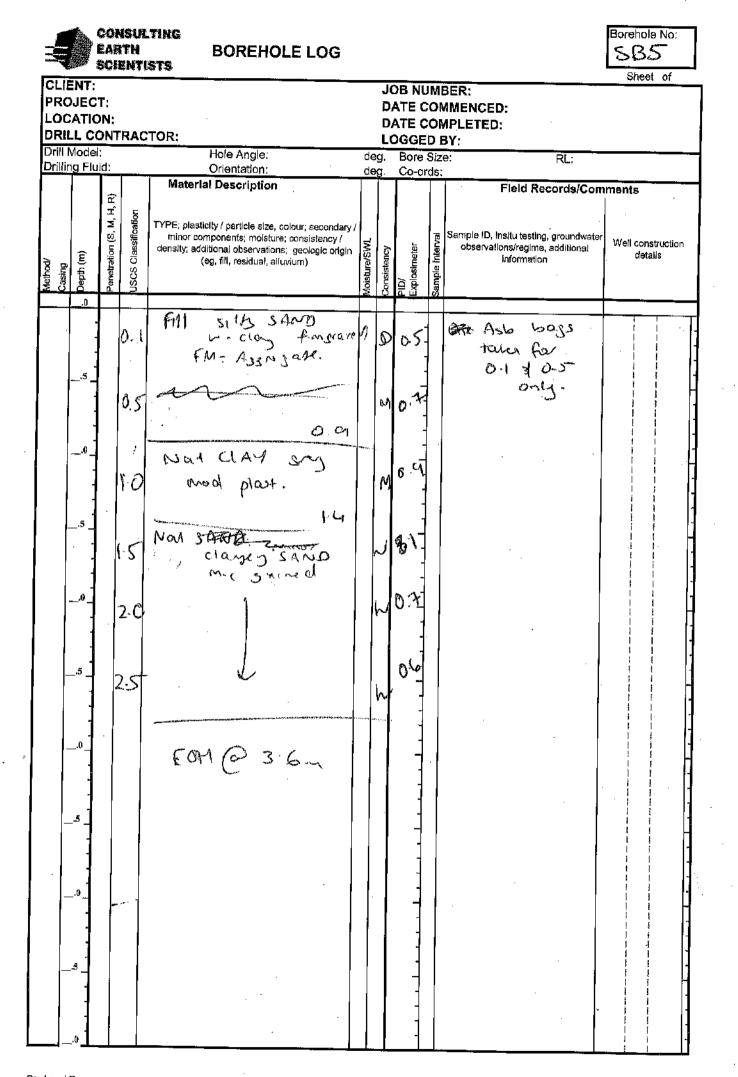
PROJECT NUMBER CES200502-PHB PROJECT NAME Raymond Terrace CLIENT Phoenix Builders ADDRESS 251 Adelaide Street, Raymond Terrace NSW

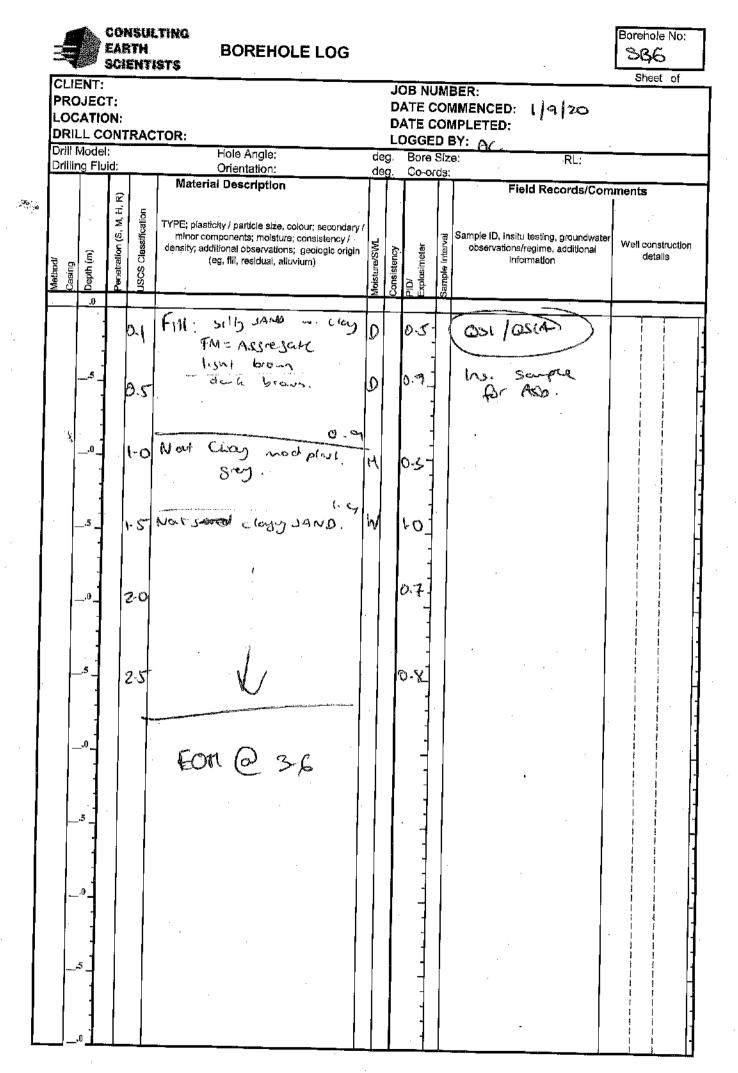
DRILLING DATE 08/09/20 DRILLING COMPANY NUMAC DRILLER Lewis DRILLING METHOD Push Tube TOTAL DEPTH 0.8 COORDINATES -32.776072, 151.740948 COORD SYS Latitude, longtitude

LOGGED BY Andrew Carras CHECKED BY Mark Challoner

сомм	ENTS					
Depth (m)	PID	Samples	Graphic Log	Material Description	Moisture	Additional Observations
- - - - - - - - - -	0.4	о SB17/0.1	0 (0 ,	FILL: Silty Gravelly SAND: fine to medium grained, dark grey/brown increasing gravel content Termination Depth at: 0.8 m		No staining or odours No staining or odours

Appendix B – Field Data Sheets and Calibration Certificates


		E	A	TH	lting Ists	BO	REHO	LE LOG										3)	rehole I SB Sheet	
PRO LOC DRI		CT: ION CON	Ŀ	RAC	TOR:				JOB NUMBER: DATE COMMENCED: 1 9/20 DATE COMPLETED: LOGGED BY: 9 C											
Drill Drilli						Hole A Orient				leg. leg.		Bore Co-or	Şiz	e:		R	L:			
			2	-	Mater	ial Desc					Ţ	<u></u>			ield F	lecor	ds/Cor	nmen	nts	
Method/ Casing	e Depth (m)		renetration (S, M, H, R)	USCS Classification	minor o	omponent: Iditional of	s; moisture	olour; seconda ; consistency / ; geologic orig vium)	· _		Consistency	PID/ Explosimeter	Sample Interval	Sample ID, ins observatior ir	itu təsti is/rəgin iformati	1e, add	undwate	r We	il constru details	etion
	. <u>,v</u>			D.1	Fill :	Sints FM =	SAND. AJJ.	brown), M).		1	0.0-		ASB	30	2	- <u>-</u>			
	5		- I	>.5	·	и	L	10				۔ بہ رو ا		1212	10	. e	۷.			
	0			-0	Fiu -	Silt CU	brown	s + deg /srej.	¥ ^ر گ ۱۲		c	י 								 - -
	5 _			-5	inv	ens, ny	3 0~	. of	Υ.		d	2.1								
	0			-5	N act.	clo f-	03 51 M 51 14 (11 51	2. c and: mersod	·			.5	-	· .					- 100	
. –	- 5 _ -		3	0					V		C	 						, 		
	_01			-	NEW TOLEN IN POSIS		V													
	5 _				F	эн С	04.9	6.												
	- - - -0_																		-	
								ι												-
	_5 							ŝ												


CLIENT		ENTI				18.47		Sheet of
PROJE	CT:			Г	DATE C	:OV	MENCED: 1 4/20	
.OCAT DRILL (TOR.		PATE C	:OV	MPLETED:	
Drill Mod		IRAU		L deg.			BY: AC	
Drilling F	luid:		Orientation:	deg. deg,				
	R		Material Description				Field Records/Com	ments
Casing Depth (m)	Penetration (S, M, H, R)	USCS Classification	TYPE; plasticity / particle size, colour; secondary / minor components; moisture; consistency / density; additional observations; geologic origin (eg, fill, residual, alluvium)	Morstbrei/SWL Consistency	PID/ Explosimeter	Sample Interval	Sample ID, Insitu festing, groundwater observations/regime, additional information	Well construction details
	1	0.1	Full silly saws, we clay it is Fill = Aas: for scared is brown sney	D	0.7-		Ash -p to D.S	
			FIN = Mas from 3					
5	1	0.5	prown srey	N	° 4		ins. sample after.	
		1.0		9	an		,	
	1	1-5	100000 3 14NB	NS.	0.6	' [
0	· ·	20	2.2 N		0.5			. I I
			Nat SAND M-C grained W. silfstore gravel,					
	1	2.5	w. sutstane second.		1.5			
5	-							
" -		30	minor silt.		1.2-		Hight organic Smell.	
	$\left \right $		N.	,	-		small.	
	1							
I — · ^D –			ECH @ 3.6					
							· · ·	
	1				-			
		1			-			
-						1		
0					4			
]			
					1			
5								
					-			
					-			
					-			
"_]					-			
]			
					· •			
- ^{.5} -]					· -			
]					. 1	1		
1 J	Í				. .	1		1 1

	CONSULTING EARTH BOREHOLE LOG SCIENTISTS CLIENT: JOB NUMBER;													
PR LO	OJE CA1	ЕС1 ГЮ	N:	RAC	TOR:		D. D.	ATE C ATE C	ion On	BER: MMENCED: \\~(ZJ) MPLETED: BY: A~	Sheet of			
Drill	l Mo ling l	del:			Hole Angle: Orientation:		g.	Bore	Siz	e: RL:				
			<u>u.</u>		Material Description	de	sg.	_Co-or	ds:	Field Records/Cor	nments			
Method/ Cariso	Depth (m)		Penetration (S, M, H, R)	USCS Classification	TYPE: plasticity / particle size, colour; secondary / minor components; moisture; consistency / density; additional observations; geologic origin (eg, fill, residual, alluvium)	Moisture/SWL	Consistency	PID/ Explosimeter	Sample Interval			lon		
	1	.0		0.1	Fill silly SAMO we clay		9	0,1 -		ASU for 0-1 \$ 0-1				
	 	5 		0.5 1-0 1-5	FM = Aspresson Inversory clay. 0.9 Not CLAY: m. plasticity Srey. 1.2		0	0.5 0.47		only				
	'	- - - -		2.0 2-5	Nort saids: m-c secured which / sign - c secured becomes gray inversion cluy.			0.6 1.9- 0.7-						
	5	5 - - -			Ezz-					· •				
	(EOH @ 3.6			- - -				-		
	5							- - -			Ann and gen was and an -	- - - -		
	0 5									• • •				
	0 5 0										* boy "na ras an an an an			

		EAR	ТH	BOREHOLE LOG					· ·	Borehole No:
PRO	CLIENT: PROJECT: LOCATION:					D	OB NU ATE C	Sheet of		
DRIL	L C	ONT	RAC	TOR:					MPLETED: BY: AC	
Drill M Drillin;				Hole Angle:		g.	Bore	Siz	e: RL:	
	ig ric			Orientation: Material Description		≥g. Î	Co-or	<u>ds:</u> T	Field Records/Con	
Casing	bepth (m)	Penetration (S, M, H, R)	USGS Classification	TYPE; plasticity / particle size, colour; secondar minor components; moisture; consistency / density; additional observations; geologic origi (eg, fill, residual, alluvium)	Moisture/SWL	Consistency	PID/ Explosimater	Sample Interval	Sample ID, insitu testing, groundwate observations/regime, additional information	
		£).5 .5 .5	Fill Silly SAND: well chobles, minor syresall brand Sills Nat clay - mod plost. Smy life Wat SAME closey SAND. Mult SAME closey SAND. SAME closey SAND. SAME closey SAND. SAND. SAME closey SAND. SAN	M					

•

	# 1	ear	TH	TING BOREHOLE LOG						Borehole No:								
PRO LOC DRIL Drill N									Sheet of JOB NUMBER: DATE COMMENCED: & / 9 / 2 0 DATE COMPLETED: LOGGED BY: <u>NC</u> deg. Bore Size: RL:									
Drillin	g Flui	id:		Orientation: Material Description	deg	<u>]</u>	Co-or	ds:	Field Records/Com	mente								
Method/ Casing	e Depth (m)	Penetration (S. M. H, R)	USCS Classification	TYPE; plasticity / particle size, colour; secondary-/ minor components; moisture; consistency / density; additional observations; geologic origin (eg, fill, residual, alluvium)	Moisture/SWL	Consistency	PID/ Explosimeter	Sample Interval	Sample ID, insitu testing, groundwater observations/regime, additional information	Well construction details								
				Natch BAND: M.f. scaned some effection score scorels		9	5.6	0.	1 QS3 /QS3A 1A66 @0-1									
•	 		•.	1 <u>4440</u> 00		M	0,9	0	5									
	0 - -			Ke.f. @ 0.8		nated T T T			ta glada ta sana a sa									
•.	_5_					•												
•.	~	19 -				•••	- - - -											
	,,							-	•									
	- 0						- - - -	• • •										
	5						- 	- - -										
	0						- - -	-										
	بر ایر							-										
				· · · · · · · · · · · · · · · · · · ·														

				373		٦ě		אר	BER: MENCED: MPLETED: \$ (9 (20)	Sh	eet of
			RAC	TOR: NUMBE		LC	GGEL) E	SY: A F		
	Aodel: g Flui			Hole Angle: Orientation:	de de	•	Bore S Co-orc				
-11001	giiu			Material Description		y.		10,	Field Records/Co	mments	,
Method/ Casing	e Depth (m)	Penetration (S. M. H. R)	USCS Classification	TYPE; plasticity / particle size, colour; secondar minor components; moisture; consistency / density; additional observations; geologic ortg (eg, fill, residual, alluvium)	2	Consistency	PID/ Explosimeter	Sample Interval	Sample ID, insitu testing, groundwate observations/regime, additional information	r Well c c	construction details
			1. X	Not clargy MND: mf gravaed.			05-	0.	5		
	, 0 		ĵ.		'2004 bi unijene		- 	····.	Managara ina dia manjara dia manjara dia manjar		
	 		× .	M.f. @ 0.8			- - -				
-	_0 -						-				· · · · · · · · · · · · · · · · · · ·
	5 _						ء ب ب				
	• 0 •						- - -				
	5 _						• 				
	0_						- - - -				
	5 _									. ī	

ì

110

i

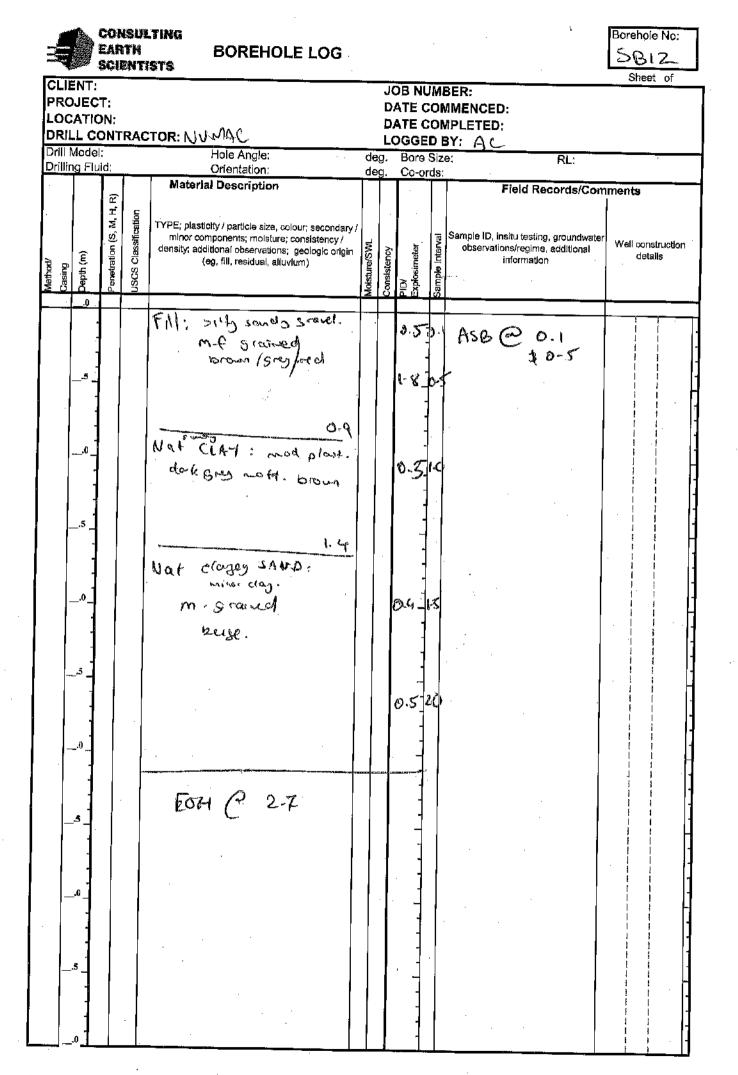
ļ

....

;

Produced By: _____

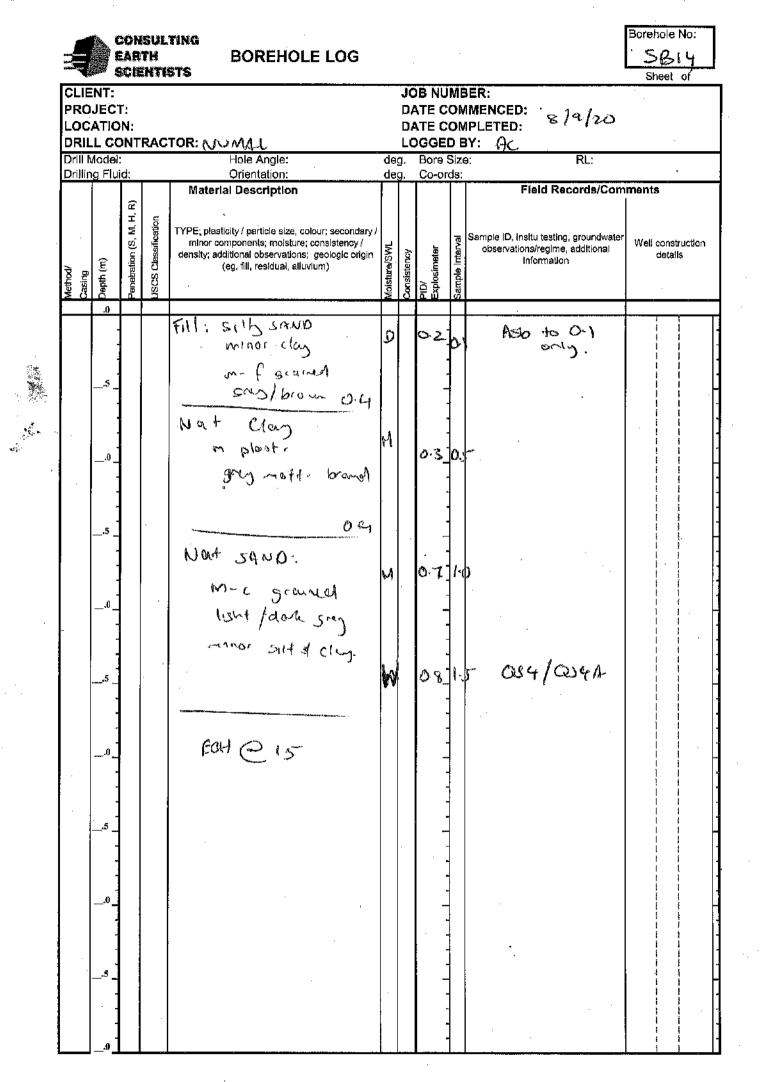
2

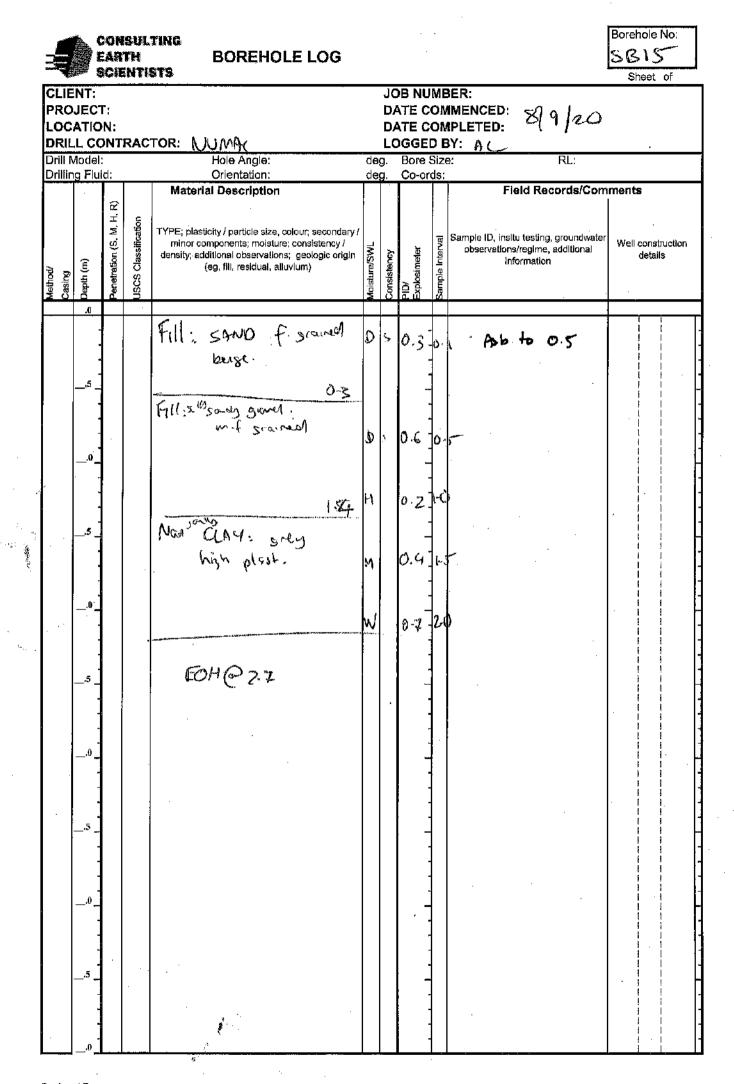

CONSULTING EARTH BOREHOLE LOG SCIENTISTS										Borehole No:
V		SCI	enti	ISTS						Sheet of
CLIENT: PROJECT:)B NÚ			
						D/	ATE C	:OV	MMENCED:	
						DA	ATE C	OV.	MPLETED: &(?/2)	
	lode	1.	RAU	TOR: NUMA			JOGE		BT: NC	
	ig Flu			Hole Angle: Orientation:	de	-	Bore			
		10.		Material Description	de: I	<u>g.</u> I	<u>Со-ог</u> Г	as:	Field Records/Con	
		Ŕ						ľ	Field Records/Colf	
		enetration (S, M, H,	5							
		N ຊີ	SCS Classification	TYPE; plasticity / particle size, colour; secondary / minor components; moisture; consistency /				, a	Sample ID, Insitu testing, groundwater	
	2	ъ	assa	density; additional observations; geologic origin	SWI	Ň	əter	ter	observations/regime, additional	Well constructio details
Casing	щ Ч	etratí	SC	(eg, fill, residual, alluvium)	ure/	ister	sime	후 도	information]
Casing	Depth (m)	ene	SC		Aoisture/SWL	Consistency	PID/ Explosimeter	Sample Interval		1
Ť	0				2.	0	0. LU	9	······································	
				Fill silly SANDY : for proved	_					
		1		apprelle + m grave			0-2	P١	rash tere	
ĺ	-	1		6 and and			.			
	.5	1		Fill silly SANDY: for scand Scorelly Brown/red 0:2					· ·	
		1		Not clazy sans: Weise/srey. m-f schind			-	1	· ·	
ſ	-							h	-	
	-			verse srey.	ļ		0,6	٢Ì	. د	
	0			m-f grand			-			
	_^~					·	-			
	-									
]			ľ			-			
				Nef. @0.6			_			
-							_			
	1		т. м				-			
]		· · · ·				-	[
			į]			
ŀ	^{.0}						_			
	-						-	[
	1				ĺ		-			
]						_			
-	5 _						_			
	-						-			
							-			
]						· -			
-	0_						[-
	-									
	-						-			
	1									
_	5]						-			
	-		[]			
	- 1						4			
	-						· -			
_	0_	·	[1		··· ···	
]	ĺ					_			
	4]			
	-						4			
	.5	ļ					-			
	- 1									
]						-			
					- 1					1 1
	- 1									

CLIENT: PROJECT: OCATION: DRILL CON Drill Model:	TRAC	TOR: UM & C- Hole Angle:		DA DA LO	B NUI TE CO TE CO GGEI Bore S	OM OM D <u>B</u>	IMENCED: 945 8/ ° IPLETED: IY:	120
Drilling Fluid:	<u> </u>	Orientation:	deg		Co-ord		Field Records/Con	ments
Mennour Casing 6 Depth (m) Dometration (S. M. H. R)	USCS Classification	Material Description TYPE; plasticity / particle size, colour; secondary / minor components; moisture; consistency / density; additional observations; geologic origin (eg, fill, residual, alluvium)	2	Consistency	PiD/ Explosimeter	Sample Interval	Sample ID, Insitu testing, groundwate observations/regime, additional Information	
		Essentie refug on Ass. "Convertin Surface Sample collected. Fill sills JANDY Grand FM = Convertine Sources EOM CO.2			6.1		Ab Sarphe Collected	
5 						• • • • • •		

REFER TO WORK INSTRUCTION GRP-FWW005

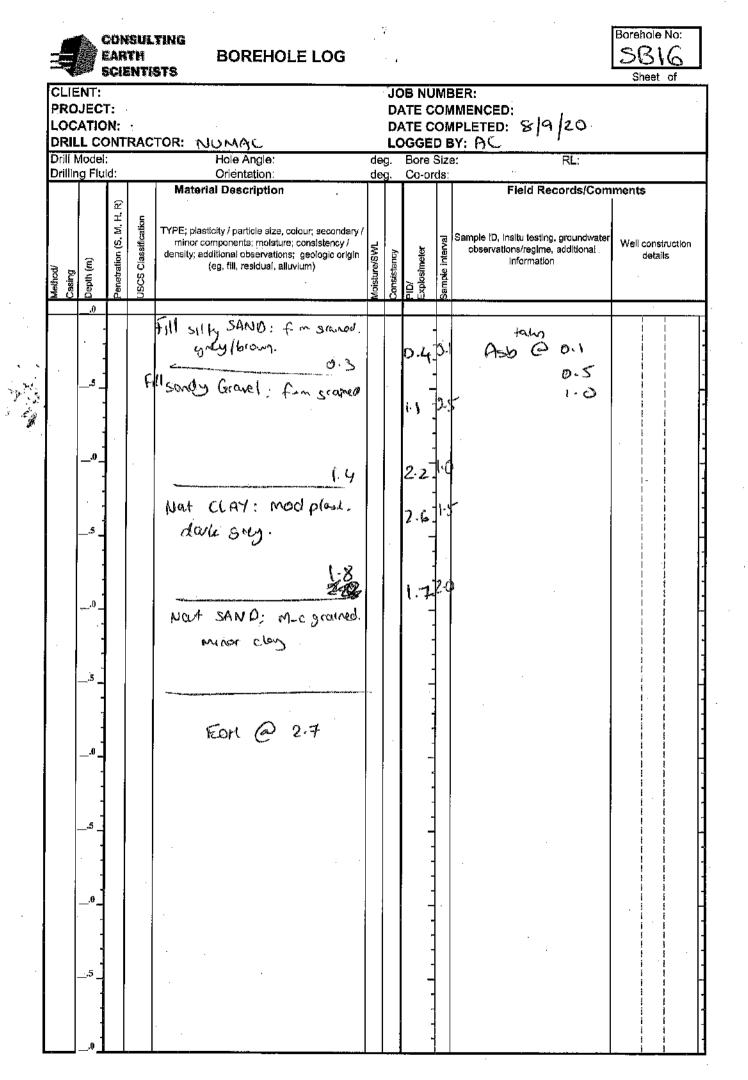
/

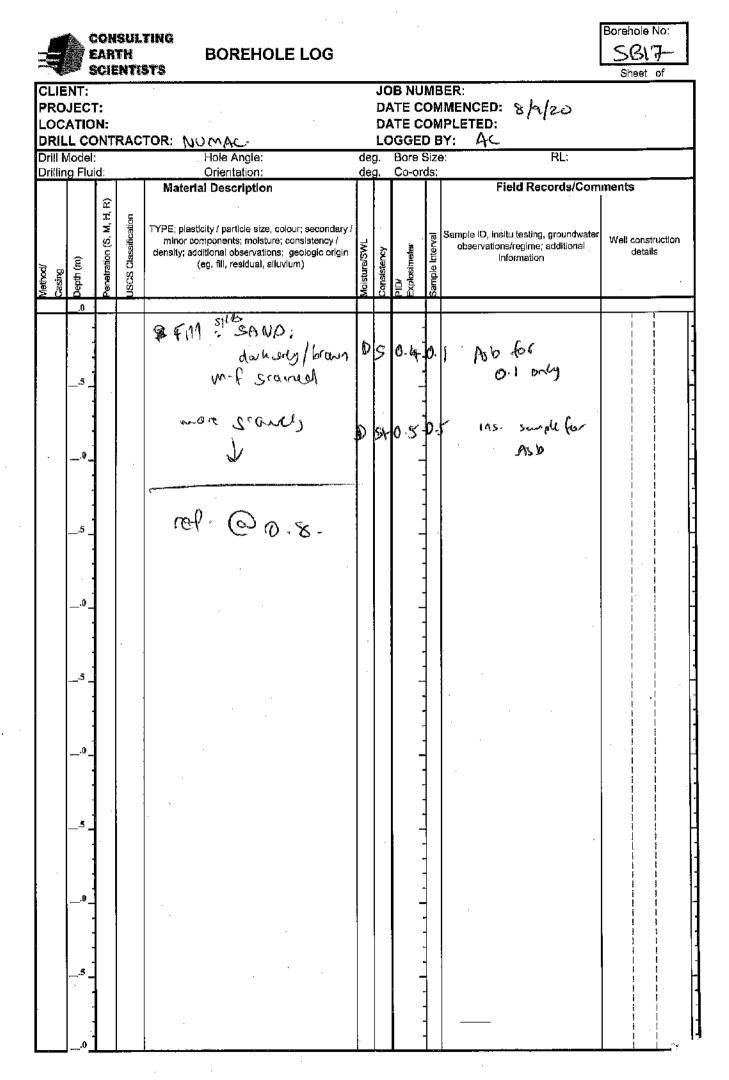

	1000023804			TING						Borehole No:
	122 20.22	EAR		BOREHOLE LOG						SBIL
		sc (i	INTI	STS						Sheet of
	ENT:	_)B NU			
)JEC								MENCED:	
			 .	7.05					NPLETED:	
			RAC	TOR:			GGE			
	Model ng Flu			Hole Angle: Orlentation:	de	-	Bore		e: RL:	
	lig riu			Material Description	<u>de</u>	y. T	<u>Co-or</u>	as: I	Field Records/Com	mente
		ନ୍ଦି						•		
		г	5							
	[S. M	ficat	TYPE; plasticity / particle size, colour; secondary / minor components; moisture; consistency /				ą	Sample ID, Insitu testing, groundwater	Well construction
	2	jon (ass	density, additional observations; geologic origin	NS/	Š	eter 19	Interval	observations/regime, additional information	details
)epth (m)	^b enetration (S. M,	JSCS Classification	(eg, fill, residual, alluvium)	ture	Consistency	osim	<u>a</u>		
Casing	Dd	Pear	nsc	· .	Moisture/SWL	ğ	PID/ Explosimeter	Sample	· · · ·	
	0							Ĺ		·····
	.									
	.			learner hefour			-	ŀ	cdl	
	•			On New VI parete			· ·	4	Asb sample Coverted	
	5 _			Contraction of the second seco			0-\-	S.	1 covered	i ì
	.			Contract defosion On Nog. "Concrete" Surface sample collected Ful: silly samon croyed Ful: silly samon croyed Ful: silly samon croyed						
	- 1			as the second						
	•			CO VACA VOI			-			
	0			Ful: silly sands Gone tiles					-	
	^{••} -						-			
	.]			FOM (00.2						
	<u>*</u> -			. 1			-			
	·-						-			
							-			} }
]]			
	0_						-			
	-									
							-			
	1									
	5 _									
	.									
	1						-			
	0									
				· · ·						
	-									
							-			
	5			-			-			
	-~									
]									
							-			
	⁰				·		• -			
				· · · ·			-			
	1						-			
							-			
	5 _						_			
								ļ		
							-			
							-			
	.0						-			



	CT: ON: CONT	RAC	TOR: NUMBE		JOB NUMBER: DATE COMMENCED: $\mathscr{G}/\mathcal{G}/\mathcal{O}$ DATE COMPLETED: LOGGED BY: $\mathcal{O}(\mathcal{O})$							
Drill Mod Drilling F			Hole Angle: Orientation:	de; de		Bore { Co-ore		e: RL:				
			Material Description		<u>.</u>			Field Records/Com	ments			
Method/ Casing Depth (m)	Penetration (S. M. H. R)	USCS Classification	TYPE; plasticity / particle size, colour; secondary minor components; moisture; consistency / density; additional observations; geologic origin (eg, fill, residual, alluvium)	2	Consistency	PID/ Explosimeter	Sample Interval	Sample ID, insitu testing, groundwater observations/regime, additional information	Well construction details			
0	• • •		Fill: Silfyey SAND Grand: m-f. Scared. or gravely send. m-f. Scand.	0		0:7 0:4_		MUB to 10				
0	• • •	-	sady clay red any			a2-						
5			Nort Sondy Chard.			-	2.0	Reference Control				
.0			North sondy Chard. mod-high plast. date Stey w. organic	W		-						
5			EQ1 @ 2.7	ţv		-	25	,				
						-						
5	•					-	-					
0						-						
	1					-						

Produced By: _____ Checked By: _____


A



Produced By: _____

REFER TO WORK INSTRUCTION GRP-FWW005

Produced By: ______ Checked By: ______

FIELD DATA SHEET : Surface-Water Monitoring

è.

Client:	-Sydam Zee-		ASCA.		Mar		·	CES Pro	ject Code	CES150404-EXC
Project:	Baseline Sunfi	as Water Sa			er R.	Mirmon	d Turoc	Date;	251	8/2 W
ampler (s):			Signate	re(s):			i		Manager;	E-MEDER OA - (A AMA
<u>)</u>		- <u>, .</u>			2	, 1				A CARLEY
Sample ID	Site	Date	Time	DO	EC	pH 1	* Eh	Temp.	Tushidite	Comment of the second sec
			Í	mg.] ⁻¹	uS.cm ⁻¹			(w ⁻	Turbidity	the first conductivity matter order,
e i 11		- 41	10	0.		· · · ·	163:7	<u> </u>	<u>NTU</u>	algal growth, debris, etc.)
SWI	•.	25/8h	104~	14.64	268	1779	1687	12 5	-	Staynant, no algal
	<u> </u>		<u> </u>		760	<u> </u>	1021	123		light brown low f
SUZ		11 -4	1000	10 3.	Jaco		18-8			light brown, low
		<u> </u>	1020	"I- ł/	1 766) k-D	1 K X	134	-	ж.
5.5		here.			~ ~			<u>`</u>		(111 m h h h h h h h h h h h h h h h h h
Sw?		· `	1040	9.84	1 828	17.11	138-0	176		Filler of the 10
				1		<u>1 'P'</u>	1.200	1	<u>.</u>	Filler of the to
S~~~~	ļ		ine e	926	212	a not	13.2	I		
			100		20) (0	/ *65	13.2	13.(*	1 - 3 A
Sus										<u> </u>
			(405)	9.53	1467 9	1262	116.9	n, c		** * f
C. d	-								· ·	'
SW6	1		1170	01.1	202 -	7 1 8	128-3	1 2 1		k 14
		┝╌╽╴╽	$-\mu_{D}$	140	15022	14.0	128.3	15.6		
SWI	1								f	65 • 5
	_		1(20)	4.54	<u> < (</u>	260	1183	RO	-	cc • 1
			<u></u>		Listan 1		-11.2	0.6		
SWY			140	9.24	212.3	711	1242	12.6		11 (x
		┝╴┲╧╌┯┨		1.377	202.5	1.04	16.47	1.2 ~		
Sing	1	1 I I I								et sit
		- I . P	ιXVI	46 TI	31	17.52	100 5	1381	5 - (S.C. 7.P. 1
	1	1 1							÷	
SUID			in al	9.91	3/5.6	201	84.3	<u>.</u>	2	tt 1
		_ µ	100		003.8	134	04.2	<u>1 "(. </u>	11	
· 🖉 🔒 👘	1 1			6.0m(h		7				Alexander a contract of the
SWIL		V.	200	my _o	4.85	7.00	1352	المرزر		Slisutty tout d, less fless
									 	- contro his order
Ser At			2. 1	olr	Rex 1	1.57	150.6 1	ا ہے ا	<u> </u>	and the P
	╡──┤	- - ^E	27 2 4	2.67	uges.	0.11	12 2 6 1	18		" clear low for course
-SW 13	1 1	1. 1	na la	m part	5091	CPI	89.6		·	1 1 CARCASE LOUND
(N 13		V	600	$\sim U_0$	001	@Y	8.1.6	3.5	·	
	1 T						·· —·	<u> </u>		•
/*	1 1		*	ļ		. I			J	1
	╊─────┼		·							
	(· 1							Ì		
· •	┦╧━┉╴╴┤		_		(í		· · · .	· · · · · · · · · · · · · · · · · · ·
		. [- <u>-</u>	2 Charles	,				A	· · _ · _ · _ · _ · _ · _ · _ · _ ·
	1	1	· · · [1	ļ].	·		
	<u>†─</u> ─						<u> </u>			
		11.12		В.	· ·]			· ·	·.	
	┟──┊╁		`[_		<u> </u>			ļ	ļ	
		ļ	[······································
<u></u>	[1				•		- í			×
	<u> </u> − .−−	- -		-+	<u> </u>	·				
	·			ļ						
	└── <u>─</u>			_				1		· ·
	.	·	· ["			-				······
			_				1			
	·		273						J	e 7

1,00011.02

GROUNDWATER FIELD DATA SHEET

Client:	Breen Resour					CES Project	Code:	
Project: Sampler (s):	Quarterly Gr	oundwater	Signature(s):	-2	and the second value of th	Location:	T Circle	
	MWI	•	Signature(s):	<u> </u>			ager: T. Stanton	· · · · · · · · · · · · · · · · · · ·
BU ID:						Sample ID: Sampling Da	Mu 1.	1.2
				_				· · · · · · · · · · · · · · · · · · ·
Well Status			_					· · · · · · · · · · · · · · · · · · ·
Well damaged:			YESING			Well locked:		YES/NO
Cement footing			YES			Cap on PVC c		TEL/NO
Internal obstruct Standing water,		und montument	YES/NO			Well ID visibl		
Water between			YES/NO			Monument da Odours from g		YES/NO YES/NO
	-		U.S. O					
		17.27			Weather Cond	litions	IL.	
Standing Water	Level (SWL):	2.46	(mBTOC)			Temperature:		°C
Well volume:			(L)					
Volume of wate	r purged:		(L) .	1		Clear	Partly Cloudy	Overcas
Purging equipm	ent:		Pump / micro-	Purgine		Calm	light breeze	Moderate Breeze
Sure oderbui	*1		Bailer / Foot			Windy	ingin orceze	MOUNTALE DICEZE
Sampling equip	ment:		Pump / Bailer			<u> </u>		
			micro-Purges		(Fine	Showers	Rain
Purging Deta	ils							
Elapsed	Cumulative	DO	• EC	рН	Eh	Temp.	••••	
time (min)	volume (L)	$(mg.L^{-1})$	(uS.cm ⁻¹)	pii	'mV	(°C)		omments
	().		· · · ·			· · · · · · · · · · · · · · · · · · ·		
120/	0.	2.76	22(7	6.88	-94.8	20.6	Block / Jack.	
.+3	5	1.18	2177	6-42	-63.8	217.5	14 4	no adam
+6	ە)	1.19	2174	6.41	-64.0	99.4	tu tij	•
+9	• کا	[+ K	2171	6.39	-63.7	-63-61	the sy	
+12	20	1.19	2169	6.58	-62.8	17.3		
							Samae	sailer.
·					· · ·	·		
					j .			
· · · · ·								
		-						
			-					
			-					.
				,				
.: [e.								
.7								
							· · ·	<u> </u>
1				• '				
Groundwater fie		· ·						

200 3.70

9 Su

GROUNDWATER FIELD DATA SHEET

Client:	Breen Resour	ces Pty Ltd				CES Project	Code; Code	
Project:	Quarterly Gr	the second se				Location:		
Sampler (s):	ĂC.		Signature(s):	1		Project Manager: T. Stanton		
BH ID:	MW2	· · · · · · · · · · · · · · · · · · ·		\mathcal{O}		Sample ID: NW 2		
	1,-,					Sampling Da		
Well Status								
Well damaged:			YES/			Well locked:	©/NO	
Cement footing	damaged:		YES/			Cap on PVC c	asing: 🚯 /NO	
nternal obstruc	tions in casing:		YES/			Well ID visibl	e: YEYNO	
Standing water,	vegetation arou	ind monument:	(YESNO V	res ·		Monument da	maged: YES/🚱	
	PVC and protec		YESNO	-		Odours from g	groundwater: YES/NO	
			<u> </u>					
		18.04			Weather Cond		S or	
Standing Water	Level (SWL):	0.21	(mBTOC)			Temperature:	\S °C	
Well volume:			(L)					
Volume of wate	r purged:		(L)			Clear	Partly Cloudy Overcast	
· ·			Des			Calu		
Purging equipm	ient:		Pump micro-		C	Calm	Slight breeze Moderate Breeze	
5 11			Bailer / Foot V			Windy	raining previous	
Sampling equip	ment:		Pump / Bailer	/ TOOL VALVE	,	Fine	Showers Rein	
	· · ·		microrruge			rme j	Showers Pain	
Purging Deta	nils			• <u>.</u>				
Elapsed	Cumulative	DO	EC	pН	Eh	Temp.		
time (min)	volume (L)	(mg.L ⁻¹)	(uS.cm ⁻¹)	-	mV	(°C)	Comments	
	1			1			Light sills, mod feb,	
75+	0	1.02	1746	6.27	-56.8	18.2	ne odowr · · · ·	
+3	5	0-40	1755	6.13	-51.7	18.2	tt e _{t i}	
+6	10	0.36	1756	6.11	-51.0	18.2	ાર દ	
۲ ۹	15	0.42	1741	6.05	-53.2	18.3	en to	
+12	20	0.39	1739	6.05	-55.2	18.3	u 4	
					<u> </u>		En de Halia	
						· · · · ·	Sample taken	
			 	1				
	L					ļ		
							• · · ·	
			l					
		· ·			1		· · · · · · · · · · · · · · · · · · ·	
	· · ·		.	<u> </u>				
			1					
	1		1	1				
				1		1	1	
							· · · · · · · · · · · · · · · · · · ·	

Groundwater field parameters at the end of purging to be marked "Field Measurements".

どし 6 4m 1P 3~3 m

0.94

0.21

.

GROUNDWATER FIELD DATA SHEET

Client:	Breen Resour					CES Project	Code:	
Project: Sampler (s):	Quarterly Gro	ounawater	Signature(s):		Location: Northease Project Manager: T. Stanton			
	13					Sample ID:	MW 3	
						Sampling Da		20
W-II Ct-t	·····		•		·,		•	
Well Status Well damaged: Cement footing Internal obstruct Standing water, Water between	tions in casing: vegetation arou		YES/ YES/ YES/ YES/ YES/ YES/			Well locked: Cap on PVC c Well ID visibl Monument da Odours from g	le: maged:	YES/NO YES/NO YES/NO YES/NO YES/NO
Standing Water Well volume: Volume of wate	Level (SWL):	3.9 2.3	(mBTOC) (L) (L)		Weather Cond	itions Temperature: Clear	\ 7 Partly Cloudy	°C Overcast
Purging equipm			Pump micro- Bailer / Foot V	/alve	(Calm Windy	Slight breeze	Moderate Breeze
Sampling equip	ment:		Pump / Bailer micro-Purge		5	Fine	Showers	Rain
Purging Deta	ils							
Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	pH `-	· Eh mV	Тетр. (°С)	•	Comments
926		2.93	610	6.10	-92.3	19.7		ed forthe no oclaw
. + 3	· S	1-32	609	5.48	-6r.0	18.2	11 4	、
+G	10	1.20	609	5.47	-67.7	18.5	12 X	· · · · · · · · · · · · · · · · · · ·
+9	15	1.13	607	5.46	-67.6	· · ·	2 * 't	· · · ·
+12	2J	1.10	607	5.46	-67.7	18.5	11	· • · ·
			• *				sunde	terre,
					<u> </u>			<u></u>
				· ······			· · · · · · · · · · · · · · · · · · ·	
								· · · ·
							· .	
								· · ·
Groundwater fie ISH WL	$e^{1d parameters a}$	t the end of pu	rging to be mar	ked "Field Mez	asurements".	47/1	••••••••••••••••••••••••••••••••••••••	84 44799-

.¢.

C IP @ 3.70~

1

GROUNDWATER FIELD DATA SHEET

Client:	Breen Resour					CES Project Code:		
Project:	Quarterly Gr	oundwater				Location:		
Sampler (s):			Signature(s):			Project Mana	iger: T. Stanton	· •
BH ID: M	N4	-				Sample ID:		
				_		Sampling Da	te: 29/10/2	
Well Status					·	·		~
Well damaged:			YES/			Well locked:	(YEXNO
Cement footing	damaged:		YESA			Cap on PVC c	asing:	YPS/NO
Internal obstruc	tions in casing:		YES/OD			Well ID visibl	e:	YESNO
Standing water,	vegetation arou	ind monument:	YESNO		• •	Monument das	maged;	YES/NO
Water between	PVC and protec	tive casing:	YESNO			Odours from g	roundwater:	YES/NO
63, man .			<u> </u>					0
		11.51			Weather Cond	litions	•	
Standing Water	Level (SWL):	0.35	(mBTOC)			Temperature:	21	°C
Well volume:			(L)					
Volume of wate	r purged:		(L)		\sim	Clear	Partly Cloudy	Overcast
Purging equipm	ent:	·	Pump/micro-			Calm	Slight breeze	Moderate Breeze
~ ** *			Bailer Foot			Windy 🔪		
Sampling equip	ment:		Pump / Bailer	/ foot valve	6	Fip	01	
		—	micro-Purge	· · · ·		Fine	Showers	Rain
Purging Deta	lils							
Elapsed	Cumulative	DO .	EC	рН	Eh	Temp.		
time (min)	volume (L)	$(mg.L^{-1})$	(uS.cm ⁻¹)	_	mV	(°C)	· Com	ments
10.00	5	4.57	1071	5.33	158.4	12.8	Light Jeey,	low torb,
1317	D	***			1201	<i>פ</i> ירו	no o de	<u>.</u>
	2	1.24	977	5.59	37.8	18.3	ery	
-	4	1:29	977	5.58	31.6	18.3	n,	
	··					11.2		
	રે	1.25	977	5.57	\$0.3	18.3	* 6 1	·
	.8	1.15	979	5.55	28.1	18.5	15 j	, ,, ,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,
	10	1.15	920	5.52	28.6	18.5	san	teres.
			1/12					
		u .		-				

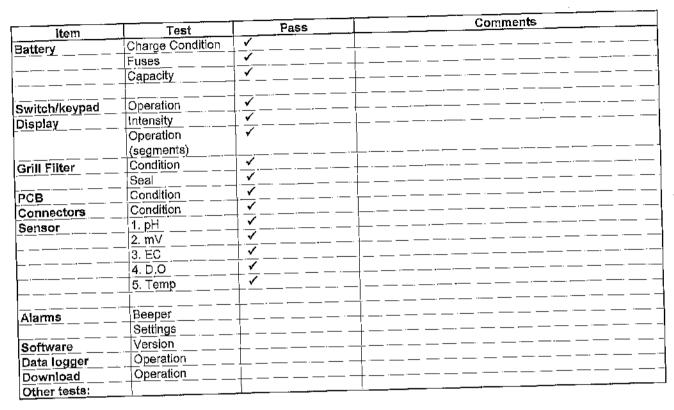
تمليهم

Groundwater field parameters at the end of purging to be marked "Field Measurements".

GROUNDWATER FIELD DATA SHEET

Client:	Breen Resour	rces Pty Ltd				CES Project	Code:	
Project:	Quarterly G	oundwater				Location:		
Sampler (s):	AL		Signature(s):	AL		Project Mana	ager: T. Stanton	
BH ID: ,	<u> </u>					Sample ID:	MWS	: • ·
· ·						Sampling Da	te: 39/HVLE	1.
Well Status		•				-		•
Well damaged:			YES/NO			Well leaf-orde		ALCON A
Cement footing			YES/NO			Well locked: Cap on PVC c	a dinar	YESANO
Internal obstruc			YES/NO	• •		Well ID visibl	-	YESNO
Standing water,	Ļ	and monument:	YES/NO	vese		Monument da		YES/NO
Water between	PVC and protes	tive casing:	YES/NO			Odours from g		YES/NO
0.79 4124 1	9 -	-						
	Ì	1.35			Weather Conc		. ,	
Standing Water	Level (SWL):	1.15	(mBTOC)			Temperature:		°C
Well volume: Volume of wate	47 marcada	-	(L) (L)			~		
volume of wate	r purgea:		(L)			Clear	Partly Cloudy	Overcast
Purging equipm	ent:		Pump / micro-	Purging		Calm	Slight breeze	Moderate Breeze
			Bailer Foot	alve		Windy (Origin Greeze	Moderate Dreeze
Sampling equip	ment:		Pump-/ Bailer		· .		•	
·			micro-Purge		r	Pine	Showers	Rain
Purging Deta	ils			•		-		
Elapsed	Cumulative	DO	EC	рН	Eh	Temp.	· .	······
time (min)	volume (L)	$(mg.L^{-1})$	(uS.em ⁻¹)	· 🖬	mV	(°C)	c c	omments
4.19	0.25	2.87	5785	3.84	121.7	18.4	here a	shid, anderlog
12:24	0.9	3.59	5407	3.66	· 1705	18.2		
12:26	0.6	.3.19	5469	3.64	·185.1	18.2		
12:28	0.8	. 2.82	SPIL	2.65	216:9	18.1	• • • • • •	· · · · · · · · · · · · · · · · · · ·
12:30		2.85	5401	3.65	-218.5	18.1	take	
10: 21	I			~ ~~	010		10.200	И
		• , ·	۱ <u>.</u> .					
	-							
. <u>-</u>								
						·····		
•								
						· · · · · ·		
						·		

Groundwater field parameters at the end of purging to be marked "Field Measurements".


WL@ 3.0m IP@2.5m

FAIL GEN Faul.

1300 137 067

Instrument YSI Quatro Pro Plus Serial No. 17C102195

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

		Standard Solutions	Certified	Solution Bottle	Instrument Reading
Sensor	Serial no			Number	
		pH 7.00	· · · · · · · · · · · · · · · · ·	330737	pH 7.02
1. pH 7.00		pH 4.00	+	330734	pH 4.10
2. pH 4.00		pH 10.00		352607	pH 9,65
3. pH 10.00				342074/346052	230.0mV
3. mV		229.0mV		333787	2.76mS
4. EC				329994	0.01ppm
5. D.O		0.00ppm 21.0°C		MultiTherm	21.0°C
6. Temp		21.00			

Calibrated by:

Eloise Carroli

Calibration date: 24/08/2020

Next calibration due:

23/09/2020

24/8/20

InstrumentYSI Quatro Pro PlusSerial No.18J104319

1300 137 067

ltem	Test	Pass	Comments
Battery	Charge Condition	 ✓ 	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	 ✓ 	
Display	Intensity	✓	
	Operation	✓	
	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
РСВ	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	 ✓ 	
	3. EC	 ✓ 	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00		355386	pH 9.82
2. pH 7.00		pH 7.00		330737	pH 7.01
3. pH 4.00		pH 4.00		351412	pH 4.04
4. mV		231.8mV		357172/357173	231.8mV
5. EC		2.76mS		350510	2.76mS
6. D.O		0.00ppm		10959	0.00pm
7. Temp		21.1°C		MultiTherm	21.2°C

Calibrated by:

Kylie Rawlings

Calibration date:

Next calibration due:

27/11/2020

28/10/2020

28/10/2020

InstrumentGeotech Interface Meter (30M)Serial No.3969

ltem	Test	Pass	Comments
Battery	Compartment	✓	
_	Capacity	✓	
Probe	Cleaned/Decon.	✓	
	Operation	✓	
Connectors	Condition	✓	
Tape Check	Cleaned	✓ ✓	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	✓	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:Ashok HettigamaCalibration date:27/10/2020Next calibration due:26/12/2020

Instrument	Geotech Interface Meter (30M)
Serial No.	4357

Air-Met Scientific Pty Ltd 1300 137 067

ltern	Test	Pass	Comments
Battery	Compartment	✓	
_	Capacity	✓	
	////		
·			
Probe	Cleaned/Decon.	1	
	Operation	1	
	•		
Connectors	Condition	1	
		4	
Tape Check	Cleaned	✓	
Connectors	Checked for cuts	1	
	· · · · · · · · · · · · · · · · · · ·		
Instrument Test	At surface level	· √	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: Chris Edwards

Calibration date:

10/11/2020

Next calibration due:

9/01/2021

Calibration & Service Report **Gas Monitor**

Company:	Active Environmental Solutions Hire	Manufacturer:	RAE Systems	Serial #:	592-914571
Contact:	Aleks Todorovic	Instrument:	MiniRAE 3000	Asset #:	-
Address:	2 Merchant Avenue	Model:	PGM 7320	Part #:	-
	Thomastown Vic 3074	Configuration:	VOC	Sold:	-
Phone:	03 9464 2300 Fax : 03 9464 3421	Wireless:	-	Last Cal:	-
Email:	Hire@aesolutions.com.au	Network ID:	-	Job #:	-
		Unit ID:	-	Cal Spec:	Std

ltem	Test	Pass/Fail	Comments
Battery	Li Ion	✓	
Charger	Charger, Power supply	✓	
	Cradle	✓	
Pump	Flow	✓	>500 mL/min
Filter	Filter, fitting, etc	✓	
Alarms	Audible, visual, vibration	✓	
Display	Operation	✓	
РСВ	Operation	✓	
Connectors	Condition	✓	
Firmware	Version	✓	2.16
Datalogger	Operation	✓	
Monitor Housing	Condition	✓	
Case	Condition/Type	✓	
Sensors			
Oxygen		-	
LEL		-	
PID	10.6eV	✓	
Toxic 1		-	
Toxic 2		-	
Toxic 3		-	
Toxic 4		-	
Toxic 5		-	

Engineer's Report

Setup, service and calibration for hire

Calibration Certificate

Sensor	Туре	Serial No:	Span	Concentration	Traceability	CF	Read	ding
			Gas		Lot #		Zero	Span
Overgon								
Oxygen								
LEL								
PID	10.6eV	2R000773	Isobutylene	100 PPM	3075-2-1	1	0	100 PPM
Toxic 1								
Toxic 2								
Toxic 3								
Toxic 4								
Toxic 5								

Calibrated/Repaired by:	Milenko Sisic		
Date:	03/08/2020		
Next due:	03/02/2021		
Head Office - Melbourne	NSW Office – Ashfield	WA Office - Malaga	QLD Office - Banyo
2 Merchant Avenue	Level 2, Suite 14, 6 - 8 Holden Street	Unit 6, 41 Holder Way	Unit 17, 23 Ashtan Place
Thomastown VIC 3074 Australia	Ashfield NSW 2131 Australia	Malaga WA 6090 Australia	Banyo QLD 4014 Australi
T: +61 3 9464 2300	T: +61 2 9716 5966	T: +61 8 9249 5663	T: +61 7 3267 1433

sales@aesolutions.com.au

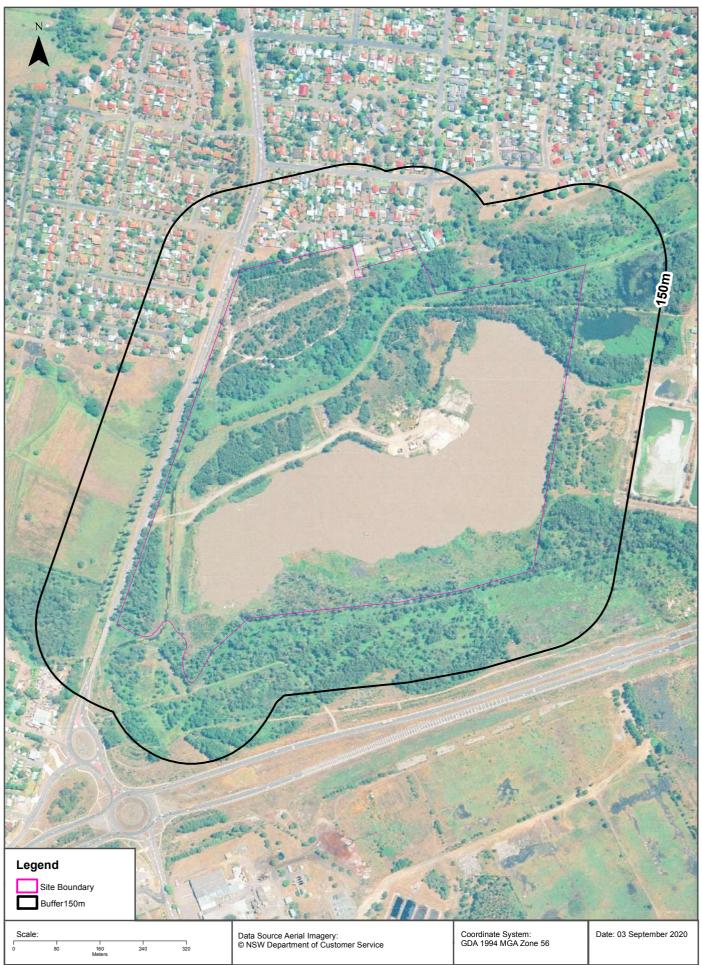
c:\users\milenko\desktop\2019 calibration\pid water\592-914571\592-914571

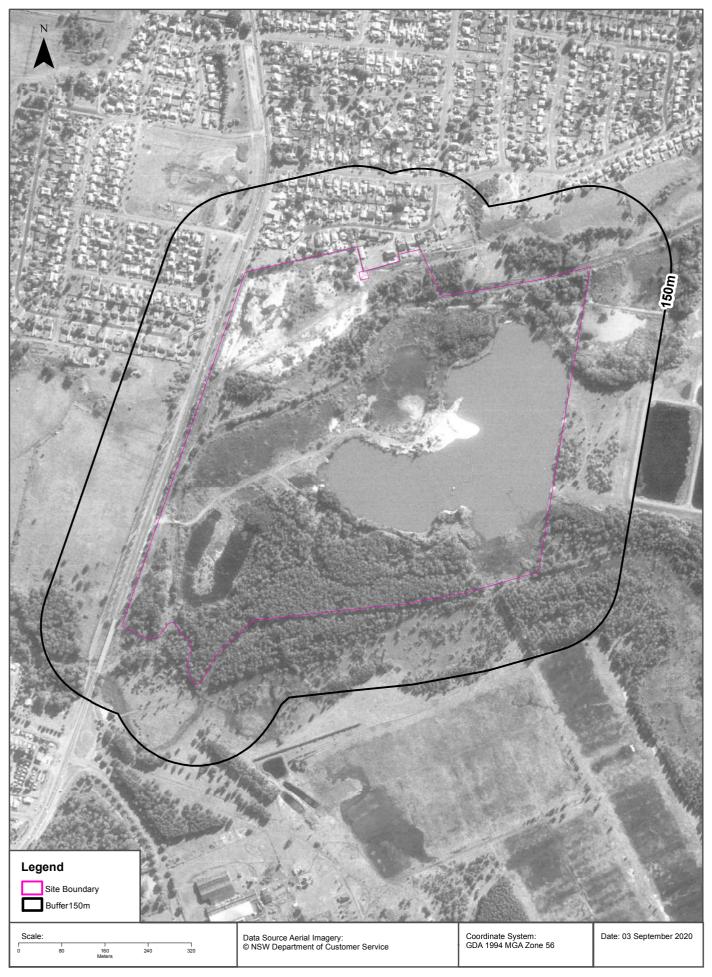
03 08 2020.docx

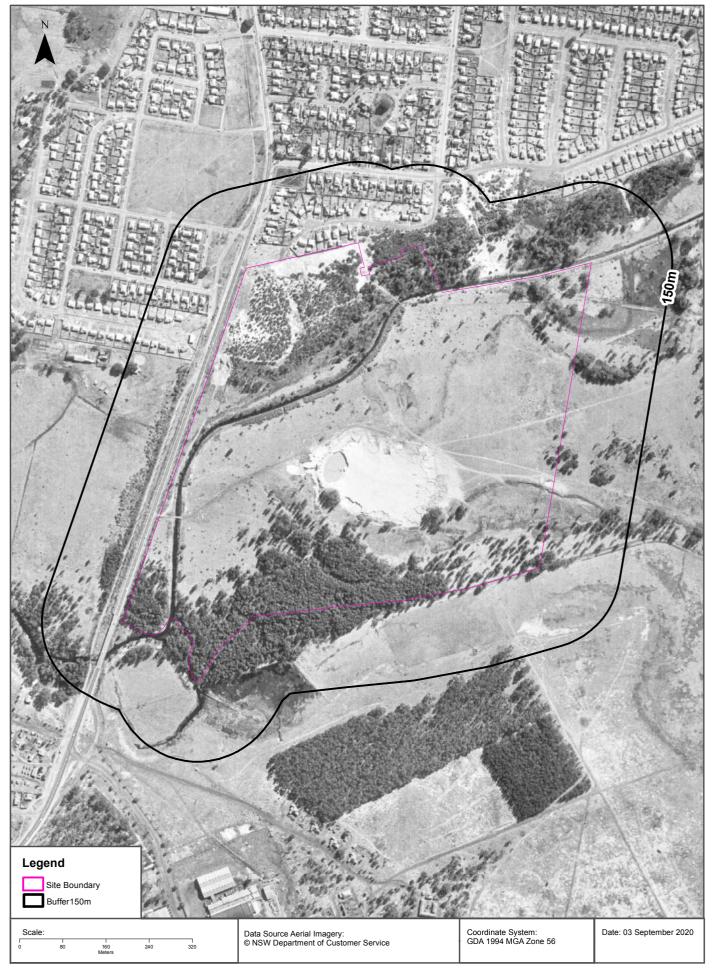
www.aesolutions.com.au

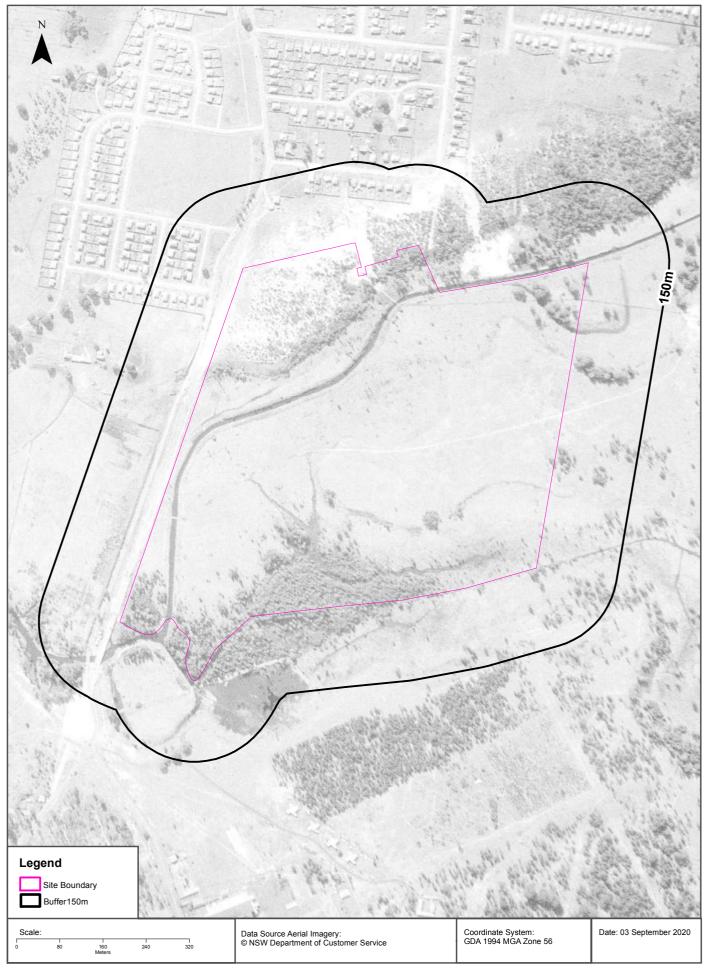
Appendix C – Lotsearch Historical Photographs

Date: 04 Sep 2020 Reference: LS014560 EA Address: 251 Adelaide Street, Raymond Terrace, NSW 2324







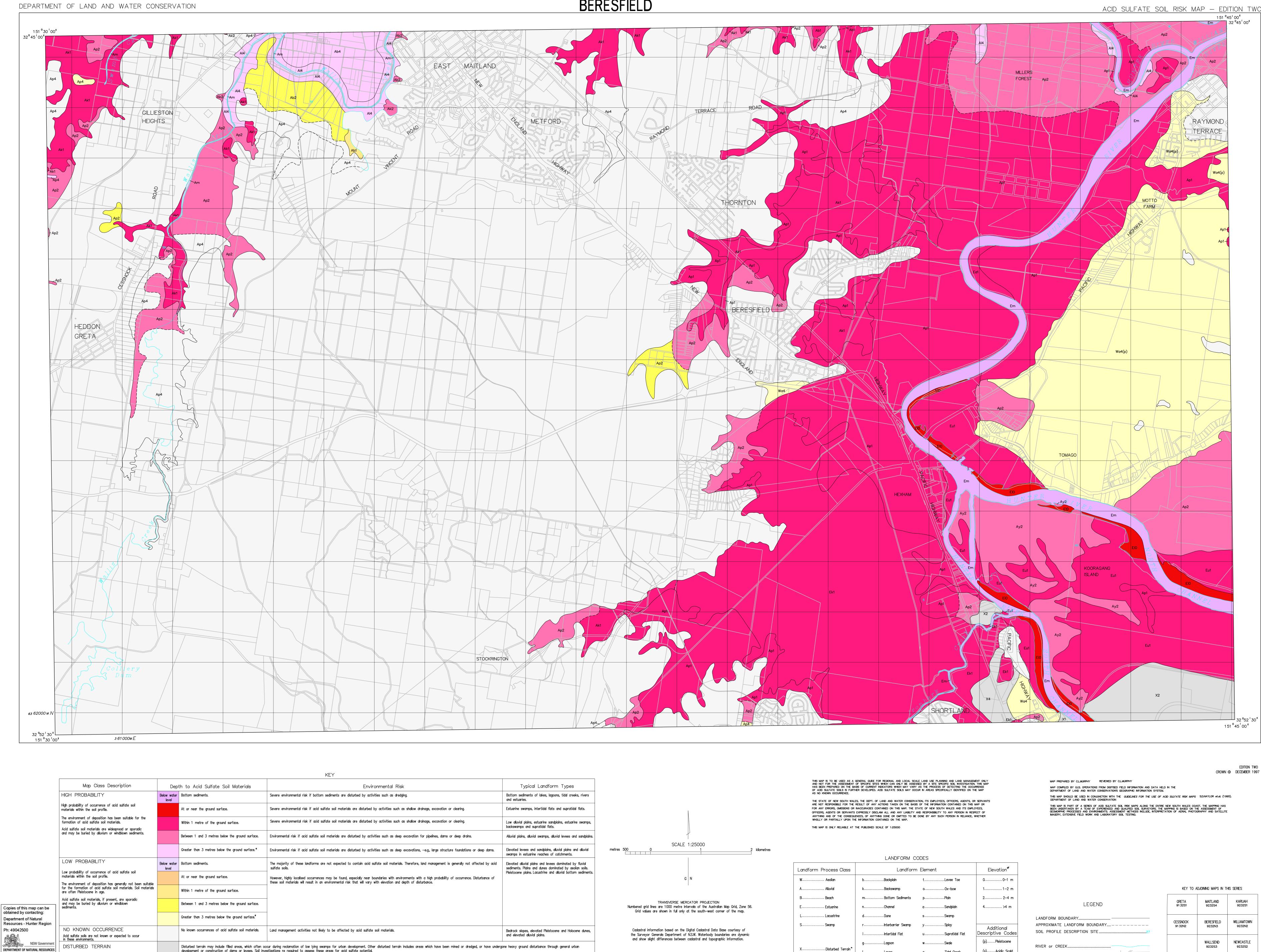


USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (**Third Party Content**) which is comprised of:
 - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (**Third Party Content Suppliers**); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - (h) the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

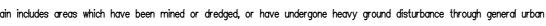
Report or these Terms;

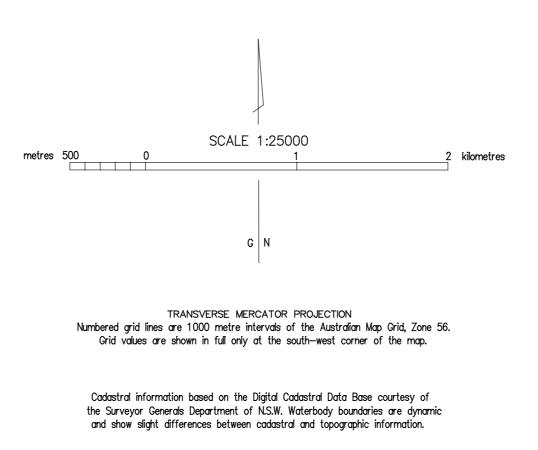

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Appendix D – Beresfield Acid Sulfate Soil Map




	-		KEY	1
Map Class Description	Dep	oth to Acid Sulfate Soil Materials	Environmental Risk	Typical Landform Types
HIGH PROBABILITY	Below water level	Bottom sediments.	Severe environmental risk if bottom sediments are disturbed by activities such as dredging.	Bottom sediments of lakes, lagoons, tidal creeks, rivers and estuaries.
High probability of occurrence of acid sulfate soil materials within the soil profile.		At or near the ground surface.	Severe environmental risk if acid sulfate soil materials are disturbed by activities such as shallow drainage, excavation or clearing.	Estuarine swamps, intertidal flats and supratidal flats.
The environment of deposition has been suitable for the formation of acid sulfate soil materials.		Within 1 metre of the ground surface.	Severe environmental risk if acid sulfate soil materials are disturbed by activities such as shallow drainage, excavation or clearing.	Low alluvial plains, estuarine sandplains, estuarine swamps, backswamps and supratidal flats.
Acid sulfate soil materials are widespread or sporadic and may be buried by alluvium or windblown sediments.		Between 1 and 3 metres below the ground surface.	Environmental risk if acid sulfate soil materials are disturbed by activities such as deep excavation for pipelines, dams or deep drains.	Alluvial plains, alluvial swamps, alluvial levees and sandplains
		Greater than 3 metres below the ground surface.*	Environmental risk if acid sulfate soil materials are disturbed by activities such as deep excavations, -e.g., large structure foundations or deep dams.	Elevated levees and sandplains, alluvial plains and alluvial swamps in estuarine reaches of catchments.
LOW PROBABILITY	Below water level	Bottom sediments.	The majority of these landforms are not expected to contain acid sulfate soil materials. Therefore, land management is generally not affected by acid sulfate soils.	Elevated alluvial plains and levees dominated by fluvial sediments. Plains and dunes dominated by aeolian soils.
Low probability of occurrence of acid sulfate soil materials within the soil profile.		At or near the ground surface.	However, highly localised occurrences may be found, especially near boundaries with environments with a high probability of occurrence. Disturbance of these soil materials will result in an environmental risk that will vary with elevation and depth of disturbance.	Pleistocene plains. Lacustrine and alluvial bottom sediments
The environment of deposition has generally not been suitable for the formation of acid sulfate soil materials. Soil materials are often Pleistocene in age.		Within 1 metre of the ground surface.		
Acid sulfate soil materials, if present, are sporadic and may be buried by alluvium or windblown sediments.		Between 1 and 3 metres below the ground surface.		
		Greater than 3 metres below the ground surface.*		
NO KNOWN OCCURRENCE Acid sulfate soils are not known or expected to occur in these environments.		No known occurrences of acid sulfate soil materials.	Land management activities not likely to be affected by acid sulfate soil materials.	Bedrock slopes, elevated Pleistocene and Holocene dunes, and elevated alluvial plains.
DISTURBED TERRAIN				gone heavy ground disturbance through general urban

obtained by contacting: Department of Natural Resources - Hunter Region Ph: 49042500 NSW Governmen

> *Deep occurrences of acid sulfate soil materials not able to be confirmed by field inspection and sampling.

BERESFIELD

....Disturbed Terrain* Χ..... (s).....Acidic Scald c.....Tidal CreekLevee

#Approximate AHD

*Elevation levels given on the map refer to the elevation of the ground surface at the time of mapping. Depending on the nature of the disturbance, these elevation levels may or may not represent the original ground surface elevation.

	KEY TO A
LEGEND	GRETA 91 3251
ANDFORM BOUNDARY APPROXIMATE LANDFORM BOUNDARY	CESSNOCK 91 32N2
ADASTRE	

Appendix E – Laboratory Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 254589

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Andrew Carras
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES200502</u>
Number of Samples	5 water
Date samples received	29/10/2020
Date completed instructions received	29/10/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	05/11/2020
Date of Issue	05/11/2020
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 254589 Revision No: R00

Page | 1 of 15

vTRH in Water (C6-C9) NEPM						_
Our Reference		254589-1	254589-2	254589-3	254589-4	254589-5
Your Reference	UNITS	MW1	MW2	MW3	MW4	MW5
Date Sampled		29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Type of sample		water	water	water	water	water
Date extracted	-	30/10/2020	30/10/2020	30/10/2020	30/10/2020	30/10/2020
Date analysed	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	<10
Surrogate Dibromofluoromethane	%	110	108	104	104	105
Surrogate toluene-d8	%	100	100	98	100	100
Surrogate 4-BFB	%	100	102	101	101	102

svTRH (C10-C40) in Water						
Our Reference		254589-1	254589-2	254589-3	254589-4	254589-5
Your Reference	UNITS	MW1	MW2	MW3	MW4	MW5
Date Sampled		29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Type of sample		water	water	water	water	water
Date extracted	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Date analysed	-	04/11/2020	04/11/2020	04/11/2020	04/11/2020	04/11/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	220	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	270	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	250	<50	<50	<50
TRH >C16 - C34	µg/L	<100	180	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	103	94	86	74	88

PAHs in Water						
Our Reference		254589-1	254589-2	254589-3	254589-4	254589-5
Your Reference	UNITS	MW1	MW2	MW3	MW4	MW5
Date Sampled		29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Type of sample		water	water	water	water	water
Date extracted	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Date analysed	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Naphthalene	μg/L	<1	1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	1.4	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	88	80	84	85	109

HM in water - dissolved						
Our Reference		254589-1	254589-2	254589-3	254589-4	254589-5
Your Reference	UNITS	MW1	MW2	MW3	MW4	MW5
Date Sampled		29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Type of sample		water	water	water	water	water
Date prepared	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Date analysed	-	02/11/2020	02/11/2020	02/11/2020	02/11/2020	02/11/2020
Arsenic-Dissolved	μg/L	7	2	<1	1	13
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	0.9
Chromium-Dissolved	µg/L	1	<1	1	<1	29
Copper-Dissolved	µg/L	28	33	17	42	70
Lead-Dissolved	µg/L	2	<1	3	1	4
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	8	4	9	6	590
Zinc-Dissolved	µg/L	250	230	160	77	2,900

Miscellaneous Inorganics						_
Our Reference		254589-1	254589-2	254589-3	254589-4	254589-5
Your Reference	UNITS	MW1	MW2	MW3	MW4	MW5
Date Sampled		29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Type of sample		water	water	water	water	water
Date prepared	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Date analysed	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
рН	pH Units	6.6	6.0	6.0	5.8	3.7
Chloride, Cl	mg/L	270	320	86	220	740
Sulphate, SO4	mg/L	290	<1	65	67	2,700
Total Organic Carbon	mg/L	200	11	9	3	20

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTROL: vTRH in Water (C6-C9) NEPM						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			30/10/2020	[NT]		[NT]	[NT]	30/10/2020	
Date analysed	-			02/11/2020	[NT]		[NT]	[NT]	02/11/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	84	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	84	
Surrogate Dibromofluoromethane	%		Org-023	100	[NT]		[NT]	[NT]	102	
Surrogate toluene-d8	%		Org-023	98	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	100	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	254589-2
Date extracted	-			02/11/2020	1	02/11/2020	02/11/2020		02/11/2020	02/11/2020
Date analysed	-			03/11/2020	1	04/11/2020	04/11/2020		03/11/2020	03/11/2020
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	104	89
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	1	<100	<100	0	88	85
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	82	77
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	1	<50	<50	0	104	89
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	88	85
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	82	77
Surrogate o-Terphenyl	%		Org-020	96	1	103	88	16	115	94

QUALIT	Y CONTROL	: PAHs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	254589-2
Date extracted	-			02/11/2020	1	02/11/2020	02/11/2020		02/11/2020	02/11/2020
Date analysed	-			02/11/2020	1	02/11/2020	02/11/2020		02/11/2020	02/11/2020
Naphthalene	µg/L	1	Org-022/025	<1	1	<1	<1	0	98	111
Acenaphthylene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Acenaphthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	100	107
Fluorene	µg/L	1	Org-022/025	<1	1	<1	<1	0	105	121
Phenanthrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	102	106
Anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Fluoranthene	µg/L	1	Org-022/025	<1	1	<1	<1	0	90	105
Pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	95	111
Benzo(a)anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Chrysene	µg/L	1	Org-022/025	<1	1	<1	<1	0	108	132
Benzo(b,j+k)fluoranthene	µg/L	2	Org-022/025	<2	1	<2	<2	0	[NT]	[NT]
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	100	120
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Benzo(g,h,i)perylene	µg/L	1	Org-022/025	<1	1	<1	<1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	84	1	88	90	2	89	85

QUALITY CC	NTROL: HN	l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			02/11/2020	1	02/11/2020	02/11/2020		02/11/2020	
Date analysed	-			02/11/2020	1	02/11/2020	02/11/2020		02/11/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	7	7	0	94	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	89	
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	97	
Copper-Dissolved	µg/L	1	Metals-022	<1	1	28	29	4	109	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	106	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	93	
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	8	8	0	97	
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	250	230	8	105	[NT]

QUALITY COI	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	254589-2
Date prepared	-			29/10/2020	1	29/10/2020	29/10/2020		29/10/2020	29/10/2020
Date analysed	-			29/10/2020	1	29/10/2020	29/10/2020		29/10/2020	29/10/2020
рН	pH Units		Inorg-001	[NT]	1	6.6			101	[NT]
Chloride, Cl	mg/L	1	Inorg-081	<1	1	270	270	0	89	#
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	290	300	3	110	75
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	200	190	5	105	116

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

MISC_INORG

Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Andrew Carras

Sample Login Details	
Your reference	CES200502
Envirolab Reference	254589-A
Date Sample Received	29/10/2020
Date Instructions Received	11/11/2020
Date Results Expected to be Reported	18/11/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	15.4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH in Water (C6-C9) NEPM	svTRH (C10-C40) in Water	PAHsin Water	HM in water - dissolved	Hq	Chloride, Cl	Sulphate, SO4	Total Organic Carbon	On Hold
MW1									\checkmark
MW2									\checkmark
MW3	✓	✓	\checkmark	✓	✓	✓	✓	✓	
MW4									\checkmark
MW5									\checkmark
MW3 - [DUPLICATE]	✓	✓	✓	\checkmark	✓	✓	√	√	

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Andrew (Fitzy) Fitzsimons

From:	Nancy Zhang
Sent:	Wednesday, 11 November 2020 5:42 PM
То:	Andrew (Fitzy) Fitzsimons
Cc:	Samplereceipt Distribution
Subject:	FW: Results for Registration 254589 CES200502

Follow Up Flag: Fo Flag Status: Fl

Follow up Flagged

254589 - A Dre: 18/11/20

A job, please.

From: andrew.carras@consultingearth.com.au <andrew.carras@consultingearth.com.au> Sent: Wednesday, 11 November 2020 3:18 PM To: Nancy Zhang <NZhang@envirolab.com.au> Cc: Mark Challoner <mark.challoner@consultingearth.com.au>

Subject: RE: Results for Registration 254589 CES200502

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Nancy,

As discussed could you please split MW3 and run both for all analytes in 254589?

Kind regards,

Andrew

From: Nancy Zhang <<u>NZhang@envirolab.com.au</u>> Sent: Thursday, 5 November 2020 4:27 PM To: <u>andrew.carras@consultingearth.com.au</u>; <u>kay.lowe@consultingearth.com.au</u> Subject: Results for Registration 254589 CES200502

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results a copy of the Invoice

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

How did we do? Send Feedback

Kind Regards,

Nancy Zhang | Laboratory Manager, Sydney | Envirolab Services

Celebrating 15 years of Great Science. Great Service.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 250828

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Andrew Carras
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES200502-PHB</u>
Number of Samples	46 Soil, 1 Water
Date samples received	09/09/2020
Date completed instructions received	10/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

16/09/2020 16/09/2020

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u>

Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Nick Sarlamis, Inorganics Supervisor Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil								
Our Reference		250828-2	250828-3	250828-4	250828-6	250828-7		
Your Reference	UNITS	SB7/0.5	SB8/0.1	SB9/0.1	SB10/0.1	SB11/0.1		
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020		
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020		
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25		
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25		
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1		
m+p-xylene	mg/kg	<2	<2	<2	<2	<2		
o-Xylene	mg/kg	<1	<1	<1	<1	<1		
naphthalene	mg/kg	<1	<1	<1	<1	<1		
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3		
Surrogate aaa-Trifluorotoluene	%	93	93	88	88	84		
vTRH(C6-C10)/BTEXN in Soil								
vTRH(C6-C10)/BTEXN in Soil Our Reference		250828-11	250828-15	250828-21	250828-24	250828-29		
	UNITS	250828-11 SB12/1.5	250828-15 SB13/1.0	250828-21 SB14/1.0	250828-24 SB15/0.5	250828-29 SB16/1.0		
Our Reference	UNITS							
Our Reference Your Reference	UNITS	SB12/1.5	SB13/1.0	SB14/1.0	SB15/0.5	SB16/1.0		
Our Reference Your Reference Date Sampled	UNITS	SB12/1.5 08/09/2020	SB13/1.0 08/09/2020	SB14/1.0 08/09/2020	SB15/0.5 08/09/2020	SB16/1.0 08/09/2020		
Our Reference Your Reference Date Sampled Type of sample		SB12/1.5 08/09/2020 Soil	SB13/1.0 08/09/2020 Soil	SB14/1.0 08/09/2020 Soil	SB15/0.5 08/09/2020 Soil	SB16/1.0 08/09/2020 Soil		
Our Reference Your Reference Date Sampled Type of sample Date extracted		SB12/1.5 08/09/2020 Soil 11/09/2020	SB13/1.0 08/09/2020 Soil 11/09/2020	SB14/1.0 08/09/2020 Soil 11/09/2020	SB15/0.5 08/09/2020 Soil 11/09/2020	SB16/1.0 08/09/2020 Soil 11/09/2020		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed	-	SB12/1.5 08/09/2020 Soil 11/09/2020 11/09/2020	SB13/1.0 08/09/2020 Soil 11/09/2020 11/09/2020	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020	SB15/0.5 08/09/2020 Soil 11/09/2020 11/09/2020	SB16/1.0 08/09/2020 Soil 11/09/2020 11/09/2020		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉	- - mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25	SB13/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25	SB15/0.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25	SB16/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$	- - mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25	SB13/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25	SB15/0.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25	SB16/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB13/1.0 08/09/2020 Soil 11/09/2020 11//09/2020 <25 <25 <25	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25	SB15/0.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB16/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1	SB13/1.0 08/09/2020 Soil 11/09/2020 11//09/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	SB15/0.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5	SB16/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB13/1.0 08/09/2020 Soil 11/09/2020 <11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB14/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB15/0.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <25 <0.2 <0.2	SB16/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_10$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1	SB13/1.0 08/09/2020 Soil 11/09/2020 11//09/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	SB14/1.0 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	SB15/0.5 08/09/2020 Soil 11/09/2020 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5	SB16/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1		
Our Reference Your Reference Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SB12/1.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SB13/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SB14/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SB15/0.5 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SB16/1.0 08/09/2020 Soil 11/09/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2		

%

89

91

87

94

Surrogate aaa-Trifluorotoluene

84

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		250828-32	250828-39	250828-40	250828-41	250828-42
Your Reference	UNITS	SB17/0.1	G2	G3	G4	MW2/1.0
Date Sampled		08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	95	92	92	89	91

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		250828-43	250828-46	250828-47
Your Reference	UNITS	MW3/3.0	TS	ТВ
Date Sampled		08/09/2020	07/08/2020	07/08/2020
Type of sample		Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020
TRH C ₆ - C ₉	mg/kg	<25	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	[NA]	<25
Benzene	mg/kg	<0.2	116%	<0.2
Toluene	mg/kg	<0.5	112%	<0.5
Ethylbenzene	mg/kg	<1	100%	<1
m+p-xylene	mg/kg	<2	99%	<2
o-Xylene	mg/kg	<1	100%	<1
naphthalene	mg/kg	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<3	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	90	90	94

svTRH (C10-C40) in Soil						
Our Reference		250828-2	250828-3	250828-4	250828-6	250828-7
Your Reference	UNITS	SB7/0.5	SB8/0.1	SB9/0.1	SB10/0.1	SB11/0.1
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	12/09/2020	12/09/2020	12/09/2020	12/09/2020	12/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	83	81	93	82

svTRH (C10-C40) in Soil						
Our Reference		250828-11	250828-15	250828-21	250828-24	250828-29
Your Reference	UNITS	SB12/1.5	SB13/1.0	SB14/1.0	SB15/0.5	SB16/1.0
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	12/09/2020	12/09/2020	12/09/2020	12/09/2020	12/09/2020
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	74	77	75	84

svTRH (C10-C40) in Soil						
Our Reference		250828-32	250828-39	250828-40	250828-41	250828-42
Your Reference	UNITS	SB17/0.1	G2	G3	G4	MW2/1.0
Date Sampled		08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	12/09/2020	12/09/2020	12/09/2020	12/09/2020	12/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	74	83	88	79

svTRH (C10-C40) in Soil			
Our Reference		250828-43	250828-47
Your Reference	UNITS	MW3/3.0	ТВ
Date Sampled		08/09/2020	07/08/2020
Type of sample		Soil	Soil
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	12/09/2020	12/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	87	82

PAHs in Soil						
Our Reference		250828-2	250828-3	250828-4	250828-6	250828-7
Your Reference	UNITS	SB7/0.5	SB8/0.1	SB9/0.1	SB10/0.1	SB11/0.1
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	101	96	95	96	95

PAHs in Soil						
Our Reference		250828-11	250828-15	250828-21	250828-24	250828-29
Your Reference	UNITS	SB12/1.5	SB13/1.0	SB14/1.0	SB15/0.5	SB16/1.0
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	1.9	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	96	100	94	102

PAHs in Soil						
Our Reference		250828-32	250828-39	250828-40	250828-41	250828-42
Your Reference	UNITS	SB17/0.1	G2	G3	G4	MW2/1.0
Date Sampled		08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.08	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	0.4	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	98	101	99	99

PAHs in Soil			
Our Reference		250828-43	250828-47
Your Reference	UNITS	MW3/3.0	ТВ
Date Sampled		08/09/2020	07/08/2020
Type of sample		Soil	Soil
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	103

Acid Extractable metals in soil						
Our Reference		250828-2	250828-3	250828-4	250828-6	250828-7
Your Reference	UNITS	SB7/0.5	SB8/0.1	SB9/0.1	SB10/0.1	SB11/0.1
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	2	5	6	10
Copper	mg/kg	14	<1	2	4	5
Lead	mg/kg	10	<1	2	3	4
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	<1	2	4	6
Zinc	mg/kg	30	2	8	17	14
Iron	mg/kg	3,600	570	1,700	4,400	7,100

Acid Extractable metals in soil						
Our Reference		250828-11	250828-15	250828-21	250828-24	250828-29
Your Reference	UNITS	SB12/1.5	SB13/1.0	SB14/1.0	SB15/0.5	SB16/1.0
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	6	35	4	22
Copper	mg/kg	3	10	17	5	13
Lead	mg/kg	3	10	11	8	11
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	4	8	4	16
Zinc	mg/kg	5	33	13	32	31
Iron	mg/kg	1,100	5,600	8,700	8,000	11,000

Acid Extractable metals in soil						
Our Reference		250828-32	250828-39	250828-40	250828-41	250828-42
Your Reference	UNITS	SB17/0.1	G2	G3	G4	MW2/1.0
Date Sampled		08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	12	21	21	5
Copper	mg/kg	<1	6	12	17	6
Lead	mg/kg	<1	5	11	17	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	5	10	10	2
Zinc	mg/kg	3	13	47	110	5
Iron	mg/kg	800	7,200	13,000	9,400	4,500

Acid Extractable metals in soil				
Our Reference		250828-43	250828-47	250828-48
Your Reference	UNITS	MW3/3.0	ТВ	SB7/0.5 - [TRIPLICATE]
Date Sampled		08/09/2020	07/08/2020	08/09/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020	11/09/2020
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	21	<1	6
Copper	mg/kg	13	<1	15
Lead	mg/kg	11	<1	8
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	8	<1	3
Zinc	mg/kg	43	<1	24
Iron	mg/kg	8,000	660	3,600

Moisture						
Our Reference		250828-2	250828-3	250828-4	250828-6	250828-7
Your Reference	UNITS	SB7/0.5	SB8/0.1	SB9/0.1	SB10/0.1	SB11/0.1
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	14/09/2020	14/09/2020	14/09/2020	14/09/2020	14/09/2020
Moisture	%	35	14	9.1	15	21
Moisture						
Our Reference		250828-11	250828-15	250828-21	250828-24	250828-29
Your Reference	UNITS	SB12/1.5	SB13/1.0	SB14/1.0	SB15/0.5	SB16/1.0
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/09/2020	11/09/2020	11/09/2020	11/09/2020	11/09/2020
Date analysed	-	14/09/2020	14/09/2020	14/09/2020	14/09/2020	14/09/2020
Moisture	%	18	12	32	7.6	39
Moisture						
Our Reference		250828-32	250828-39	250828-40	250828-41	250828-42
Your Reference		CD17/0 1	G2	G3	G4	MW2/1.0
	UNITS	SB17/0.1	62	65		101002/1.0
Date Sampled	00115	08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
	UNITS					
Date Sampled	-	08/09/2020	07/08/2020	08/09/2020	08/09/2020	07/08/2020
Date Sampled Type of sample		08/09/2020 Soil	07/08/2020 Soil	08/09/2020 Soil	08/09/2020 Soil	07/08/2020 Soil
Date Sampled Type of sample Date prepared		08/09/2020 Soil 11/09/2020	07/08/2020 Soil 11/09/2020	08/09/2020 Soil 11/09/2020	08/09/2020 Soil 11/09/2020	07/08/2020 Soil 11/09/2020
Date Sampled Type of sample Date prepared Date analysed	- -	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020
Date Sampled Type of sample Date prepared Date analysed Moisture	- -	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020
Date Sampled Type of sample Date prepared Date analysed Moisture Moisture	- -	08/09/2020 Soil 11/09/2020 14/09/2020 6.8	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020
Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference	- - %	08/09/2020 Soil 11/09/2020 14/09/2020 6.8 250828-43	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020
Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference	- - %	08/09/2020 Soil 11/09/2020 14/09/2020 6.8 250828-43 MW3/3.0	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020
Date Sampled Type of sample Date prepared Date analysed Moisture Our Reference Your Reference Date Sampled	- - %	08/09/2020 Soil 11/09/2020 14/09/2020 6.8 250828-43 MW3/3.0 08/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	08/09/2020 Soil 11/09/2020 14/09/2020	07/08/2020 Soil 11/09/2020 14/09/2020

14/09/2020

27

-%

Date analysed

Moisture

sPOCAS + %S w/w			
Our Reference		250828-42	250828-43
Your Reference	UNITS	MW2/1.0	MW3/3.0
Date Sampled		07/08/2020	08/09/2020
Type of sample		Soil	Soil
Date prepared	-	14/09/2020	14/09/2020
Date analysed	-	14/09/2020	14/09/2020
pH _{kcl}	pH units	4.1	4.3
TAA pH 6.5	moles H ⁺ /t	22	30
s-TAA pH 6.5	%w/w S	0.03	0.05
pH _{ox}	pH units	4.2	3.7
TPA pH 6.5	moles H ⁺ /t	31	100
s-TPA pH 6.5	%w/w S	0.05	0.16
TSA pH 6.5	moles H+/t	9	70
s-TSA pH 6.5	%w/w S	0.02	0.11
ANCE	% CaCO ₃	NA	NA
a-ANC _E	moles H ⁺ /t	NA	NA
s-ANC _E	%w/w S	NA	NA
S _{KCI}	%w/w S	0.009	0.02
Sp	%w/w	0.02	0.04
SPOS	%w/w	0.009	0.03
a-S _{POS}	moles H+ /t	5	17
Саксі	%w/w	0.005	0.1
Cap	%w/w	0.007	0.11
Ca _A	%w/w	<0.005	0.010
Мдксі	%w/w	<0.005	0.040
Mg₽	%w/w	0.011	0.049
MgA	%w/w	0.010	0.009
Shci	%w/w S	0.019	0.023
Snas	%w/w S	0.010	0.006
a-S _{NAS}	moles H ⁺ /t	<5	<5
s-S _{NAS}	%w/w S	<0.01	<0.01
Fineness Factor	-	1.5	1.5
a-Net Acidity	moles H+/t	32	50
s-Net Acidity	%w/w S	0.05	0.08
Liming rate	kg CaCO₃/t	2.4	3.8
s-Net Acidity without -ANCE	%w/w S	0.051	0.081
a-Net Acidity without ANCE	moles H+/t	32	50
Liming rate without ANCE	kg CaCO₃ /t	2.4	3.8

Asbestos ID - soils NEPM - ASB-001						
Our Reference		250828-4	250828-6	250828-7	250828-15	250828-29
Your Reference	UNITS	SB9/0.1	SB10/0.1	SB11/0.1	SB13/1.0	SB16/1.0
Date Sampled		08/09/2020	08/09/2020	08/09/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	14/09/2020	14/09/2020	14/09/2020	14/09/2020	14/09/2020
Sample mass tested	g	664.15	625.61	686.91	339.17	361.96
Sample Description	-	Brown coarse- grained soil & rocks	Grey coarse- grained soil & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001					
Our Reference		250828-32	250828-39	250828-40	250828-41
Your Reference	UNITS	SB17/0.1	G2	G3	G4
Date Sampled		08/09/2020	07/08/2020	08/09/2020	08/09/2020
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	14/09/2020	14/09/2020	14/09/2020	14/09/2020
Sample mass tested	g	558.73	515.25	479.11	405.79
Sample Description	-	Brown sandy soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-	-
FA and AF Estimation*	g	-	-	_	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

vTRH(C6-C10)/BTEXN in Water Our Reference		250828-45
Your Reference	UNITS	RB1
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C_6 - C_{10} less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	100
Surrogate toluene-d8	%	99
Surrogate 4-BFB	%	97

svTRH (C10-C40) in Water		
Our Reference		250828-45
Your Reference	UNITS	RB1
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	16/09/2020
Date analysed	-	16/09/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	97

PAHs in Water		
Our Reference		250828-45
Your Reference	UNITS	RB1
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	16/09/2020
Date analysed	-	16/09/2020
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	84

Metals in Waters - Acid extractable		
Our Reference		250828-45
Your Reference	UNITS	RB1
Date Sampled		08/09/2020
Type of sample		Water
Date prepared	-	11/09/2020
Date analysed	-	11/09/2020
Arsenic - Total	mg/L	<0.05
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Copper - Total	mg/L	<0.01
Lead - Total	mg/L	<0.03
Mercury - Total	mg/L	<0.0005
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" li="" mid-point="" most="" pql.="" stipulated="" the=""> Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs. </pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	250828-4
Date extracted	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Date analysed	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	104	97
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	104	97
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	102	88
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	103	89
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	93	112
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	112	99
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	98	88
naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	102	2	93	82	13	113	94

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	11/09/2020	11/09/2020			[NT]
Date analysed	-			[NT]	39	11/09/2020	11/09/2020			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	39	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	39	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	39	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	39	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	39	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	39	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	39	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-023	[NT]	39	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	39	92	96	4		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	250828-4
Date extracted	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Date analysed	-			12/09/2020	2	12/09/2020	12/09/2020		12/09/2020	12/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	105	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	89	89
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	95	92
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	105	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	89	89
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	95	92
Surrogate o-Terphenyl	%		Org-020	86	2	90	91	1	112	115

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	11/09/2020	11/09/2020			
Date analysed	-			[NT]	39	12/09/2020	12/09/2020			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	39	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	39	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	39	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	39	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	39	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	39	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	39	74	74	0	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	250828-4
Date extracted	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Date analysed	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	108	103
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	91	86
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	98	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	99	95
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	100	95
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	104	98
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	112	106
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	102	97
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	95	2	101	98	3	102	97

QUALI	IY CONTRO	L: PAHs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	39	11/09/2020	11/09/2020			[NT]
Date analysed	-			[NT]	39	11/09/2020	11/09/2020			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	39	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	39	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	39	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	39	98	97	1		[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-11	250828-4
Date prepared	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Date analysed	-			11/09/2020	2	11/09/2020	11/09/2020		11/09/2020	11/09/2020
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	105	91
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	100	78
Chromium	mg/kg	1	Metals-020	<1	2	5	3	50	91	83
Copper	mg/kg	1	Metals-020	<1	2	14	6	80	93	94
Lead	mg/kg	1	Metals-020	<1	2	10	6	50	91	85
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	91	80
Nickel	mg/kg	1	Metals-020	<1	2	3	1	100	92	77
Zinc	mg/kg	1	Metals-020	<1	2	30	17	55	90	83
Iron	mg/kg	10	Metals-020	<10	2	3600	2300	44	93	#

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	39	11/09/2020	11/09/2020			[NT]
Date analysed	-			[NT]	39	11/09/2020	11/09/2020			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	39	<4	<4	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	39	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	39	12	12	0		[NT]
Copper	mg/kg	1	Metals-020	[NT]	39	6	6	0		[NT]
Lead	mg/kg	1	Metals-020	[NT]	39	5	5	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	39	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	39	5	5	0		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	39	13	13	0		[NT]
Iron	mg/kg	10	Metals-020	[NT]	39	7200	6500	10		[NT]

QUALIT	Y CONTROL: s	POCAS +	+ %S w/w			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	[NT]
Date prepared	-			14/09/2020	42	14/09/2020	14/09/2020		14/09/2020	
Date analysed	-			14/09/2020	42	14/09/2020	14/09/2020		14/09/2020	
pH _{kcl}	pH units		Inorg-064	[NT]	42	4.1	4.1	0	97	
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	42	22	22	0	96	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	42	0.03	0.04	29	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	42	4.2	3.8	10	105	
TPA pH 6.5	moles H*/t	5	Inorg-064	<5	42	31	45	37	86	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	42	0.05	0.07	33	[NT]	
TSA pH 6.5	moles H* /t	5	Inorg-064	<5	42	9	23	88	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	42	0.02	0.04	67	[NT]	
ANCE	% CaCO ₃	0.05	Inorg-064	<0.05	42	NA	NA		[NT]	
a-ANC _E	moles H* /t	5	Inorg-064	<5	42	NA	NA		[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	42	NA	NA		[NT]	
S _{KCI}	%w/w S	0.005	Inorg-064	<0.005	42	0.009	0.009	0	[NT]	
Sp	%w/w	0.005	Inorg-064	<0.005	42	0.02	0.02	0	[NT]	
S _{POS}	%w/w	0.005	Inorg-064	<0.005	42	0.009	0.009	0	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	42	5	5	0	[NT]	
Ca _{KCI}	%w/w	0.005	Inorg-064	<0.005	42	0.005	0.007	33	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	42	0.007	0.007	0	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	42	<0.005	<0.005	0	[NT]	
Мдксі	%w/w	0.005	Inorg-064	<0.005	42	<0.005	<0.005	0	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	42	0.011	0.012	9	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	42	0.010	0.011	10	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	42	0.019	0.019	0	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	42	0.010	0.010	0	[NT]	
a-S _{NAS}	moles H⁺/t	5	Inorg-064	<5	42	<5	<5	0	[NT]	
s-S _{NAS}	%w/w S	0.01	Inorg-064	<0.01	42	<0.01	<0.01	0	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	42	1.5	1.5	0	[NT]	
a-Net Acidity	moles H⁺/t	5	Inorg-064	<5	42	32	33	3	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	42	0.05	0.05	0	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	42	2.4	2.5	4	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	42	0.051	0.052	2	[NT]	

QUALITY (QUALITY CONTROL: sPOCAS + %S w/w						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	[NT]	
a-Net Acidity without ANCE	moles H*/t	5	Inorg-064	<5	42	32	33	3		[NT]	
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	42	2.4	2.5	4		[NT]	

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	108	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	97	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	95	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			16/09/2020	[NT]		[NT]	[NT]	16/09/2020	
Date analysed	-			16/09/2020	[NT]		[NT]	[NT]	16/09/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	87	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	103	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	87	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	103	
Surrogate o-Terphenyl	%		Org-020	74	[NT]		[NT]	[NT]	100	

QUALIT	Y CONTROL	.: PAHs ir	n Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			16/09/2020	[NT]		[NT]	[NT]	16/09/2020		
Date analysed	-			16/09/2020	[NT]		[NT]	[NT]	16/09/2020		
Naphthalene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	85		
Acenaphthylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	90		
Fluorene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	86		
Phenanthrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	92		
Anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	88		
Pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	89		
Benzo(a)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Chrysene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	86		
Benzo(b,j+k)fluoranthene	µg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	83		
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	µg/L	1	Org-022/025	<1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	81	[NT]		[NT]	[NT]	86		

QUALITY CONTRO	OL: Metals ir	n Waters ⋅	- Acid extractable			Duj	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			11/09/2020	[NT]	[NT]		[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]	[NT]		[NT]	11/09/2020	
Arsenic - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]		[NT]	95	
Cadmium - Total	mg/L	0.01	Metals-020	<0.01	[NT]	[NT]		[NT]	94	
Chromium - Total	mg/L	0.01	Metals-020	<0.01	[NT]	[NT]		[NT]	94	
Copper - Total	mg/L	0.01	Metals-020	<0.01	[NT]	[NT]		[NT]	101	
Lead - Total	mg/L	0.03	Metals-020	<0.03	[NT]	[NT]		[NT]	101	
Mercury - Total	mg/L	0.0005	Metals-021	<0.0005	[NT]	[NT]		[NT]	100	
Nickel - Total	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]		[NT]	99	
Zinc - Total	mg/L	0.02	Metals-020	<0.02	[NT]	[NT]		[NT]	98	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 250828-15, 29, 32, 39, 40, 41 are below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Acid Extractable Metals in Soil:

-The laboratory RPD acceptance criteria has been exceeded for 250828-2 for Cu,Pb,Zn and Fe. Therefore a triplicate result has been issued as laboratory sample number 250828-48.

-# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Andrew Carras

Sample Login Details	
Your reference	CES200502-PHB
Envirolab Reference	250828
Date Sample Received	09/09/2020
Date Instructions Received	09/09/2020
Date Results Expected to be Reported	16/09/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	46 Soil, 1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	9.3
Cooling Method	Ice, Ice pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	sPOCAS + %S w/w	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	HM in water - dissolved	On Hold
SB7/0.1											✓
SB7/0.5	✓	✓	\checkmark	\checkmark							
SB8/0.1											✓
SB9/0.1	\checkmark	✓	\checkmark	\checkmark		\checkmark					
SB9/0.5											✓
SB10/0.1	✓	✓	✓	✓		✓					
SB11/0.1	✓	✓	✓	✓		\checkmark					
SB12/0.1											✓
SB12/0.5											✓
SB12/1.0											✓
SB12/1.5	✓	✓	\checkmark	\checkmark							
SB12/2.0											✓
SB13/0.1											✓
SB13/0.5											✓
SB13/1.0	✓	✓	✓	✓		✓					
SB13/1.5											✓
SB13/2.0											✓
SB13/2.5											✓
SB14/0.1											✓
SB14/0.5											\checkmark
SB14/1.0	✓	✓	\checkmark	\checkmark							
SB14/1.5											✓
SB15/0.1											✓
SB15/0.5	✓	✓	✓	✓		✓					
SB15/1.0											✓
SB15/2.0											✓
SB16/0.1											✓
SB16/0.5											✓
SB16/1.0	✓	✓	✓	✓		\checkmark					
SB16/1.5											✓
SB16/2.0											✓
SB17/0.1	\checkmark	✓	\checkmark	\checkmark		\checkmark					

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Acid Extractable metalsin soil	sPOCAS + %S w/w	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	HM in water - dissolved	On Hold
SB17/0.5											\checkmark
QS3											\checkmark
QS3A											\checkmark
QS4											✓
QS4A											\checkmark
G1											✓
G2	✓	✓	\checkmark	✓		\checkmark					
G3	✓	✓	\checkmark	\checkmark		\checkmark					
G4	✓	\checkmark	\checkmark	\checkmark		\checkmark					
MW2/1.0	\checkmark	✓	\checkmark	\checkmark	\checkmark						
MW3/3.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
MW3/10.0											\checkmark
RB1							\checkmark	\checkmark	\checkmark	\checkmark	
TS	\checkmark										
ТВ	\checkmark	✓	✓	\checkmark							

The '\screw' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

envikou	ÀЭ	CHA]	EN OF	CUSTO	ŊΥ	- C	lie	ent							· 12	Ashley	SL, Cha	trolab Se nswood, / sydne	NSW 20	167 relab.com.au			
ENVIROLAB GROUP - National phone									i phone number 1300 42 43 44 lient Project Name / Number / Site etc (le report title):									Perth Lab - MPL Laboratories 16-18 Hayden Crt Myneye, WA 6154					
lient: Consulting Earth Scientists						Proje	ct Nan	•				report	1 1100);					/ lab@n					
ontact Perso							1		ES200	502-P	HB				Melbourne Leb - Envirolab Services								
roject Mors A					PO No						,				14 Delatore Drivt Scorosby VIC 3179 Ph 03 9763 2500 / melbourne@enviroleb.com.au								
ampler: A.Ca						o lab Q results					<i>′</i>												
(daress: Leve	ss: Level 1 Suite 3, 55-65 Grandview Street, Pymble NSW				Date results required:										90 20	sbane i	Office -	Envirole St, Baru	to Servic co. Of Du	67 5014			
hone: (02) 8569 2200 Mob; <u>0497 018 918</u>					Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform isb in solvence if urgent turnaround is required - <u>surphanes apply</u> Report format; asdat / equits /															inolab.com.au			
																elatio	Office -	Envirola	ib Servic	41			
mail:	and the company the april	lingeach co			_	o unus Cistin		uatre	fine (_	7a The Parade, Norwood, SA 5067 Ph 0405 350 706 / adelaide Perwirolab.com.au					7			
andrew.carras@consullingearth.com.au																							
Sample information					Tests Required												•						
					Â	ल		. :			T T				1		1		·	Camagents			
Envirolab Sample 10	Client Sample 10 or information	Depth	Dat a sampled	Type of sample	Combo 3a (NEPPS WA Asb)	Combination 3	VTRH/IBTEX	NEPH ZULS Sol	SPOCAS										Hold	Provide as quici Information about sample as you ca			
ι	S87/0.1		8/09/2020	Soil						-								ł	x	1 chem, 1 asb			
2	SB7/0.5		8/09/2020	Soil		Х														1 chem			
. 3	SB8/0.1		8/09/2020	Soil														1	х	1 chem			
<u> </u> (1)2	588/0.5		8/09/2020	Soil		Х		[1 chem			
4	\$B9/0.1		8/09/2020	Soil	X		—	<u> </u>	\vdash	 	I		<u> </u>	<u> </u>	<u> </u>	L	[+		1 chem, 1asb			
Ś	SB9/0.5		8/09/2020	Soil	<u> </u>		<u> </u>			<u> </u>	┣──		┣──		<u> </u>	┣──	 	+	X	1 chem			
<u><u></u><u></u><u></u></u>	SB10/0.1		8/09/2020	Soll	X			 		<u> </u>	<u> </u>	 	├──			┣─		+	-	1 chem, 1 asb			
7	SB11/0.1 SB12/0.1		8/09/2020 8/09/2020	Soll Soil	X		<u> </u>	 _		-	 _	+	├			-	+		x	1 chem, 1 asb 1 chem, 1 asb			
<u> </u>	SB12/0.1		8/09/2020	Soll			<u> </u>	<u> </u>			1	<u> </u>	<u>├</u>	· -	-		{	+	1X	1 chem, 1 asb			
10	5812/1.0		8/09/2020	Soll			••••										!		Îx	1 chem			
ũ	\$B12/1.5		8/09/2020	Soil		X		í				;							Ê	1 chem			
12	SB12/2.0	•	8/09/2020	Soil			- 1				···-	<u> </u>						1	x	1 chern			
-13	SB13/0.1		8/09/2020	Soil				Ì		l l									х	1 chem, 1 asb			
14	\$B13/0.5		8/09/2020	Soil														_	x	1 chem, 1 asb			
ાંડ.	SB13/1.0		8/09/2020	Soll	х					<u> </u>								L		1 chem, 1 asb			
<u>_</u> <u>l</u> <u>g</u> _	SB13/1.5	<u> </u>	8/09/2020	Soll								<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u>×</u> _	1 chem			
5	SB13/2.0 SB13/2.5		8/09/2020 8/09/2020	Soll Soil				<u> </u>		<u> </u>	<u> </u>			-					X	1 chem			
19	5B14/0.1		8/09/2020	Soll			-				+	┝──				<u> </u>		+	Îx -	1 chem 1 cehm, 1 asb			
20	5814/0.5	<u> · · · · · · · · · · · · · · · · · · ·</u>	8/09/2020	Soll				 										+	x	1 chem			
11	SB14/1.0	i	8/09/2020	Sell		ΙX													-	1 chem			
21	SB14/1.5		8/09/2020	Sail															X	1 chem			
2	SB15/0.1	1	8/09/2020	Soli					_								1		Х	1 chem, 1 asb			
24	5815/0.5		8/09/2020	Soil	х			L												1 chem, 1 asb			
<u>-75</u>	SB15/1.0		8/09/2020	Soil						<u> </u>									X	1 chem, 1 asb			
NR	SB15/1.5		8/09/2020	Soll				<u> </u>			<u> </u>	╄		-	· · -				X	1 chem			
26	SB15/2.0 SB16/0.1		8/09/2020 8/09/2020	Soil Soil			<u> </u>	· ·	· ·			 					-		X X	1 chem			
-27	SB16/0.5		8/09/2020	Soil									├──			<u> </u>			1 .	1 chem, 1 asb 1 chem, 1 asb			
21	SB16/1.0	· · · · ·	8/09/2020	Soll	x		┣━-	<u> </u>				┼╾━੶	<u> </u>			<u> </u>		+	ŕ –	1 chem, 1-asb			
30	SB16/1.5		8/09/2020	Soil .	Ĥ		<u> </u>	<u> </u>			1	1	<u> </u>		<u> </u>		1	+	x	1 chem			
31	5816/2.0	i	8/09/2020	Soll							1	1	<u> </u>				1	1	ÎX 🗌	1 chem			
21	5817/0.1		8/09/2020	Soil	х								<u> </u>			·-		1-	f:	1 chem, 1 asb			
<u>53</u>	SB17/0.5		8/09/2020	Soil															х	1 chem			
34	Q\$3		8/09/2020	Soil														L	х	1 chem			
-35	QS3A		8/09/2020	Soil				· ·				Ļ.							х	1 chem			
<u>-36</u>	QS4	1	8/09/2020	Soil			—	<u> </u>		—	┣	—	<u> </u>		 		<u> </u>	—	X	1 chem			
-37	Q54A		8/09/2020 7/08/2020	Soil	⊢+					<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		-	+	X	1 chem			
34	G1 G2	-	7/08/2020 7/08/2020	Soil	x			 		<u> </u>	 		 		<u> </u>		+	1	۴	1 chem, 1 asb			
40	G		8/09/2020	Soil	Â						1	1	<u> </u>		<u> </u>		† •	†	1	1 chem, 1 asb			
ψī	G4		8/09/2020	Soil	x		_						. · ·						t ·	1 chem, 1 asb			
41 42 43	MW2/1.0		7/08/2020	Şoil		х			X									1		1 chem, 1 ASS			
43	MW3/3.0	,	8/09/2020	Soil		X			×					`						1 chem, 1 ASS			
44	MW3/10.0		8/09/2020	Soil						<u> </u>	\vdash		<u> </u>	·	L_				X.	1 ASS .			
<u> 45</u>	881		8/09/2020	Water	\vdash	X	<u> </u>	<u> </u>		ŀ—	l	—	┣──		<u> </u>	<u> </u>	-	<u> </u>		Total Metals			
-46	<u>т</u> я тв		7/08/2020	Soil Soil		x	X	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>		<u> </u>	-	-	+	 	<u> </u>			
	ip iy (Company):	CES	1100/20201	3011	Barel		(Cerry	peny)į	- P	3	-	-		L	·	se ani		1	-				
int Name:	n i soudenn kit	A Carras				Yea by Name:	ردom ۸	255	nae	د م	00	1			Same	les Re	r" Celver	± 060	br Am	ient (circle one)			
ite & Time:		9-Sep-20				L Time		1.01 1.9	.20	2	110	õ			Tumo	iratu	* Rec	eived a	E 6	3 (If applicable)			
onature:				· .	Signat	ture:		_	-	- 2	-	4		<u>, </u>	Trans	porter	1 by 1	Hand d	alivere	d / courier			

Envirolab Services 12 Ashley St Chatswood NSW 2067 Ph: (02) 9910 6200 ETIVIROLAB

5

 \mathbf{C}

Ph: (02) 9910 Job No: 250 92 9 Date Received: 9-9-20 Time Received: \\00 Received By: MO Temp: God/Ambient Cooling: Ice/cepack Security: Infact/Broken/None

. .

ed 22/05/12, Version 5, Page 1 of 1. Chain

> ٥ 1-12